Display options
Share it on

Biomicrofluidics. 2016 Aug 26;10(4):044111. doi: 10.1063/1.4955155. eCollection 2016 Jul.

A microfluidic optical platform for real-time monitoring of pH and oxygen in microfluidic bioreactors and organ-on-chip devices.

Biomicrofluidics

Seyed Ali Mousavi Shaegh, Fabio De Ferrari, Yu Shrike Zhang, Mahboubeh Nabavinia, Niema Binth Mohammad, John Ryan, Adel Pourmand, Eleanor Laukaitis, Ramin Banan Sadeghian, Akhtar Nadhman, Su Ryon Shin, Amir Sanati Nezhad, Ali Khademhosseini, Mehmet Remzi Dokmeci

PMID: 27648113 PMCID: PMC5001973 DOI: 10.1063/1.4955155

Abstract

There is a growing interest to develop microfluidic bioreactors and organ-on-chip platforms with integrated sensors to monitor their physicochemical properties and to maintain a well-controlled microenvironment for cultured organoids. Conventional sensing devices cannot be easily integrated with microfluidic organ-on-chip systems with low-volume bioreactors for continual monitoring. This paper reports on the development of a multi-analyte optical sensing module for dynamic measurements of pH and dissolved oxygen levels in the culture medium. The sensing system was constructed using low-cost electro-optics including light-emitting diodes and silicon photodiodes. The sensing module includes an optically transparent window for measuring light intensity, and the module could be connected directly to a perfusion bioreactor without any specific modifications to the microfluidic device design. A compact, user-friendly, and low-cost electronic interface was developed to control the optical transducer and signal acquisition from photodiodes. The platform enabled convenient integration of the optical sensing module with a microfluidic bioreactor. Human dermal fibroblasts were cultivated in the bioreactor, and the values of pH and dissolved oxygen levels in the flowing culture medium were measured continuously for up to 3 days. Our integrated microfluidic system provides a new analytical platform with ease of fabrication and operation, which can be adapted for applications in various microfluidic cell culture and organ-on-chip devices.

References

  1. J Appl Physiol (1985). 2000 Apr;88(4):1467-73 - PubMed
  2. J Natl Cancer Inst. 2001 Feb 21;93(4):266-76 - PubMed
  3. J Leukoc Biol. 2001 Apr;69(4):522-30 - PubMed
  4. Anal Chem. 2002 Sep 15;74(18):4647-52 - PubMed
  5. Int J Biochem Cell Biol. 2005 Aug;37(8):1670-80 - PubMed
  6. Biosens Bioelectron. 2005 Aug 15;21(2):248-56 - PubMed
  7. Lab Chip. 2005 Oct;5(10):1059-66 - PubMed
  8. Biotechnol Bioeng. 2006 Feb 5;93(2):332-43 - PubMed
  9. Nature. 2006 Jul 27;442(7101):368-73 - PubMed
  10. Lab Chip. 2006 Sep;6(9):1125-39 - PubMed
  11. Biomed Microdevices. 2007 Apr;9(2):123-34 - PubMed
  12. Biotechnol Prog. 2007 Mar-Apr;23(2):430-4 - PubMed
  13. Nano Lett. 2008 Dec;8(12):4179-84 - PubMed
  14. PLoS One. 2011 Jan 19;6(1):e15746 - PubMed
  15. Biosens Bioelectron. 2011 Jun 15;26(10):4191-7 - PubMed
  16. Am J Physiol. 1990 Jun;258(6 Pt 1):C967-81 - PubMed
  17. Sensors (Basel). 2009;9(6):4955-85 - PubMed
  18. Lab Chip. 2012 Jun 21;12(12):2156-64 - PubMed
  19. Biochem Biophys Res Commun. 2013 Feb 8;431(2):181-5 - PubMed
  20. IEEE Trans Biomed Eng. 2013 Mar;60(3):682-90 - PubMed
  21. Lab Chip. 2013 Apr 21;13(8):1593-601 - PubMed
  22. Adv Drug Deliv Rev. 2013 Nov;65(11-12):1403-19 - PubMed
  23. Chem Soc Rev. 2013 Nov 21;42(22):8700-32 - PubMed
  24. Curr Opin Pharmacol. 2013 Oct;13(5):829-33 - PubMed
  25. Integr Biol (Camb). 2013 Sep;5(9):1149-61 - PubMed
  26. Biomed Opt Express. 2013 Aug 27;4(9):1749-58 - PubMed
  27. Biomed Microdevices. 2014 Feb;16(1):91-6 - PubMed
  28. Anal Chem. 2014 Jan 7;86(1):15-29 - PubMed
  29. Lab Chip. 2014 Jan 7;14(1):138-46 - PubMed
  30. Expert Opin Drug Discov. 2014 Apr;9(4):335-52 - PubMed
  31. Chem Soc Rev. 2014 May 21;43(10):3666-761 - PubMed
  32. J Control Release. 2014 Sep 28;190:82-93 - PubMed
  33. Electrophoresis. 2014 Aug;35(16):2370-7 - PubMed
  34. Nat Commun. 2014 Jul 21;5:4460 - PubMed
  35. Nat Biotechnol. 2014 Aug;32(8):760-72 - PubMed
  36. Sens Actuators B Chem. 2014 Dec 1;204:536-543 - PubMed
  37. Lab Chip. 2014 Nov 21;14(22):4305-18 - PubMed
  38. Analyst. 2015 Feb 21;140(4):963-75 - PubMed
  39. Nat Rev Drug Discov. 2015 Apr;14(4):248-60 - PubMed
  40. Electroanalysis. 2013 Jul 1;25(7):1706-1712 - PubMed
  41. Nanomedicine (Lond). 2015;10(5):685-8 - PubMed
  42. Lab Chip. 2015 Jun 21;15(12):2688-99 - PubMed
  43. Lab Chip. 2015;15(18):3661-9 - PubMed
  44. Sci Rep. 2016 Mar 01;6:22237 - PubMed
  45. Sci Rep. 2016 Apr 21;6:24598 - PubMed
  46. Sensors (Basel). 2008 Jan 25;8(1):561-581 - PubMed
  47. Crit Rev Anal Chem. 1989;21(1):29-47 - PubMed
  48. Methods Appl Fluoresc. 2015 Apr 21;3(3):034002 - PubMed
  49. Cancer Res. 1994 Nov 1;54(21):5670-4 - PubMed
  50. Nat Med. 1997 Feb;3(2):177-82 - PubMed
  51. Anal Chem. 1998 Dec 1;70(23):5054-61 - PubMed

Publication Types

Grant support