Display options
Share it on

Front Cell Neurosci. 2016 Aug 05;10:190. doi: 10.3389/fncel.2016.00190. eCollection 2016.

The Isotropic Fractionator as a Tool for Quantitative Analysis in Central Nervous System Diseases.

Frontiers in cellular neuroscience

Ivan E Repetto, Riccardo Monti, Marta Tropiano, Simone Tomasi, Alessia Arbini, Carlos-Humberto Andrade-Moraes, Roberto Lent, Alessandro Vercelli

Affiliations

  1. Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Turin Turin, Italy.
  2. Child Study Center, Yale School of Medicine, New Haven CT, USA.
  3. Federal University of Rio de Janeiro Medical School, MacaƩ Campus Rio de Janeiro, Brazil.
  4. Institute of Biomedical Sciences, Federal University of Rio de Janeiro Rio de Janeiro, Brazil.

PMID: 27547177 PMCID: PMC4974250 DOI: 10.3389/fncel.2016.00190

Abstract

One major aim in quantitative and translational neuroscience is to achieve a precise and fast neuronal counting method to work on high throughput scale to obtain reliable results. Here, we tested the isotropic fractionator (IF) method for evaluating neuronal and non-neuronal cell loss in different models of central nervous system (CNS) pathologies. Sprague-Dawley rats underwent: (i) ischemic brain damage; (ii) intraperitoneal injection with kainic acid (KA) to induce epileptic seizures; and (iii) monolateral striatal injection with quinolinic acid (QA) mimicking human Huntington's disease. All specimens were processed for IF method and cell loss assessed. Hippocampus from KA-treated rats and striatum from QA-treated rats were carefully dissected using a dissection microscope and a rat brain matrix. Ischemic rat brains slices were first processed for TTC staining and then for IF. In the ischemic group the cell loss corresponded to the neuronal loss suggesting that hypoxia primarily affects neurons. Combining IF with TTC staining we could correlate the volume of lesion to the neuronal loss; by IF, we could assess that neuronal loss also occurs contralaterally to the ischemic side. In the epileptic group we observed a reduction of neuronal cells in treated rats, but also evaluated the changes in the number of non-neuronal cells in response to the hippocampal damage. In the QA model, there was a robust reduction of neuronal cells on ipsilateral striatum. This neuronal cell loss was not related to a drastic change in the total number of cells, being overcome by the increase in non-neuronal cells, thus suggesting that excitotoxic damage in the striatum strongly activates inflammation and glial proliferation. We concluded that the IF method could represent a simple and reliable quantitative technique to evaluate the effects of experimental lesions mimicking human diseases, and to consider the neuroprotective/anti-inflammatory effects of different treatments in the whole brain and also in discrete regions of interest, with the potential to investigate non-neuronal alterations. Moreover, IF could be used in addition or in substitution to classical stereological techniques or TTC staining used so far, since it is fast, precise and easily combined with complex molecular analysis.

Keywords: cerebral ischemia; epilepsy; isotropic fractionator; neuroprotection; striatal lesion

References

  1. J Neurosci Methods. 2014 Jan 30;222:165-74 - PubMed
  2. Development. 2013 Jan 15;140(2):301-12 - PubMed
  3. PLoS One. 2011;6(9):e25088 - PubMed
  4. Brain Res. 2001 Jun 1;902(2):178-89 - PubMed
  5. J Histochem Cytochem. 1996 Oct;44(10):1167-71 - PubMed
  6. Front Neuroanat. 2014 May 16;8:36 - PubMed
  7. Brain Dev. 1998 Mar;20(2):88-94 - PubMed
  8. Dis Model Mech. 2014 Sep;7(9):1101-9 - PubMed
  9. Nat Neurosci. 2015 Jan;18(1):75-86 - PubMed
  10. Neurochem Int. 2000 Apr;36(4-5):313-8 - PubMed
  11. Rev Neurosci. 2007;18(3-4):283-94 - PubMed
  12. Lancet Neurol. 2009 May;8(5):491-500 - PubMed
  13. J Neurosci. 2006 Aug 9;26(32):8295-304 - PubMed
  14. Biomed Res Int. 2014;2014:291531 - PubMed
  15. J Neurosci Methods. 2005 Oct 15;148(1):26-35 - PubMed
  16. Neurobiol Dis. 2015 Apr;76:46-56 - PubMed
  17. Glia. 2005 Jun;50(4):287-98 - PubMed
  18. J Neurosci. 2006 Jan 11;26(2):609-21 - PubMed
  19. Cell Death Dis. 2011 Nov 10;2:e228 - PubMed
  20. Mol Neurodegener. 2012 Nov 22;7:58 - PubMed
  21. Cell Tissue Res. 1982;222(1):223-6 - PubMed
  22. J Microsc. 1987 Feb;145(Pt 2):121-42 - PubMed
  23. PLoS One. 2014 Mar 26;9(3):e93334 - PubMed
  24. J Comp Neurol. 2009 Apr 10;513(5):532-41 - PubMed
  25. J Neurol Sci. 2014 Oct 15;345(1-2):61-7 - PubMed
  26. PLoS One. 2013 May 10;8(5):e63553 - PubMed
  27. PLoS One. 2014 Jul 07;9(7):e100869 - PubMed
  28. Neuroscience. 2003;122(2):551-61 - PubMed
  29. Chem Senses. 2015 Feb;40(2):89-95 - PubMed
  30. Anat Rec. 1991 Dec;231(4):482-97 - PubMed
  31. PLoS One. 2014 Dec 12;9(12 ):e114554 - PubMed
  32. Eur J Pharmacol. 2013 Nov 15;720(1-3):16-28 - PubMed
  33. Brain Res. 1986 Apr 23;371(2):267-77 - PubMed
  34. J Pineal Res. 2003 Mar;34(2):95-102 - PubMed
  35. Br J Cancer. 1972 Aug;26(4):239-57 - PubMed
  36. Toxicol Appl Pharmacol. 2014 Jun 15;277(3):259-69 - PubMed
  37. J Neurochem. 2009 Aug;110(3):956-65 - PubMed
  38. Trends Neurosci. 1992 Jun;15(6):211-2 - PubMed
  39. J Neurosci Methods. 2013 Jan 15;212(1):72-8 - PubMed
  40. Brain Res. 2016 Mar 1;1634:179-86 - PubMed
  41. CNS Neurol Disord Drug Targets. 2014;13(8):1465-74 - PubMed
  42. Stroke. 1998 Jul;29(7):1454-60; discussion 1461 - PubMed
  43. J Neurosci. 2005 Mar 9;25(10):2518-21 - PubMed
  44. Glia. 2014 Dec;62(12):2061-79 - PubMed
  45. J Comp Neurol. 1992 Dec 22;326(4):549-60 - PubMed
  46. Brain. 2008 Nov;131(Pt 11):3019-33 - PubMed
  47. Methods Mol Biol. 2013;1010:177-200 - PubMed
  48. Brain Struct Funct. 2015 Jul;220(4):2423-39 - PubMed
  49. Eur J Neurosci. 2011 Mar;33(5):819-30 - PubMed
  50. Trends Neurosci. 1999 Feb;22(2):51-61 - PubMed
  51. Nat Neurosci. 2013 Mar;16(3):273-80 - PubMed
  52. Front Neuroanat. 2012 Oct 26;6:45 - PubMed
  53. Arch Med Res. 2008 Apr;39(3):265-76 - PubMed
  54. Front Neurol Neurosci. 2013;32:36-44 - PubMed
  55. Nat Neurosci. 2015 Jan;18(1):87-96 - PubMed
  56. Eur J Neurosci. 2012 Jan;35(1):1-9 - PubMed
  57. Epilepsia. 2005;46 Suppl 5:113-7 - PubMed
  58. Eur J Neurosci. 2010 Apr;31(7):1261-72 - PubMed
  59. Behav Brain Res. 2008 Nov 21;193(2):289-97 - PubMed
  60. J Neurosci Methods. 1990 Feb;31(2):93-100 - PubMed
  61. Brain. 2013 Dec;136(Pt 12):3738-52 - PubMed
  62. FEBS J. 2012 Apr;279(8):1356-65 - PubMed
  63. Neurosci Lett. 2014 Jan 24;559:147-51 - PubMed
  64. Neurosci Res. 2006 Sep;56(1):103-10 - PubMed
  65. Indian J Physiol Pharmacol. 2009 Jan-Mar;53(1):39-46 - PubMed
  66. Brain Res. 2008 May 13;1209:85-91 - PubMed
  67. Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15927-32 - PubMed
  68. Nat Med. 2002 Sep;8(9):963-70 - PubMed
  69. Neurobiol Dis. 2010 Feb;37(2):267-74 - PubMed
  70. Brain Behav Evol. 2015;86(3-4):145-63 - PubMed
  71. J Neurosci Methods. 2012 Jan 15;203(1):10-8 - PubMed
  72. Brain Res Rev. 2007 Apr;54(1):34-66 - PubMed
  73. Exp Neurol. 2000 Jan;161(1):317-29 - PubMed
  74. Exp Neurol. 2005 Sep;195(1):71-80 - PubMed
  75. Brain Behav Evol. 2010;76(1):32-44 - PubMed
  76. Front Pharmacol. 2012 Feb 28;3:27 - PubMed
  77. Int J Tryptophan Res. 2012;5:1-8 - PubMed
  78. Stroke. 2009 Jun;40(6):2244-50 - PubMed
  79. Nature. 1997 Oct 23;389(6653):865-70 - PubMed
  80. Development. 1992 Sep;116(1):201-11 - PubMed
  81. Neuroscience. 2004;127(2):319-32 - PubMed
  82. Neuroscience. 2009 Mar 17;159(2):842-9 - PubMed
  83. Glia. 2013 Jun;61(6):881-91 - PubMed
  84. Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):12138-43 - PubMed
  85. Exp Neurol. 2009 Sep;219(1):363-7 - PubMed
  86. Curr Mol Med. 2004 Mar;4(2):193-205 - PubMed
  87. J Neurosci. 2009 Apr 22;29(16):5075-87 - PubMed
  88. Mov Disord. 2007 Sep;22 Suppl 17:S335-42 - PubMed
  89. Neuron. 2003 Oct 9;40(2):427-46 - PubMed
  90. J Neurosci. 2015 Jul 15;35(28):10252-67 - PubMed
  91. Cytotherapy. 2014 Aug;16(8):1059-72 - PubMed
  92. J Microsc. 1986 Jul;143(Pt 1):3-45 - PubMed
  93. Anat Rec. 1946 Feb;94:239-47 - PubMed
  94. Lancet. 2007 Jan 20;369(9557):218-28 - PubMed
  95. J Neurocytol. 2002 Mar-Jun;31(3-5):289-98 - PubMed
  96. Neurotherapeutics. 2010 Oct;7(4):439-51 - PubMed
  97. Brain Res Bull. 2007 Apr 30;72 (2-3):148-51 - PubMed
  98. Mol Neurobiol. 2005;31(1-3):3-16 - PubMed
  99. Brain Res. 1972 Nov 27;47(1):262-8 - PubMed
  100. Eur J Neurosci. 2014 Apr;39(7):1234-44 - PubMed
  101. PLoS One. 2011;6(7):e21999 - PubMed
  102. Exp Neurol. 1994 Sep;129(1):37-56 - PubMed
  103. Mol Cell Neurosci. 2012 Mar;49(3):300-10 - PubMed
  104. J Neurosci. 2006 Jun 14;26(24):6627-36 - PubMed
  105. J Neurosci. 1998 Jan 1;18(1):237-50 - PubMed
  106. J Neurobiol. 2005 Feb 5;62(2):207-18 - PubMed
  107. J Neurol Neurosurg Psychiatry. 2008 Aug;79(8):874-80 - PubMed

Publication Types