Display options
Share it on

Nat Commun. 2016 Sep 21;7:12955. doi: 10.1038/ncomms12955.

Even-odd layer-dependent magnetotransport of high-mobility Q-valley electrons in transition metal disulfides.

Nature communications

Zefei Wu, Shuigang Xu, Huanhuan Lu, Armin Khamoshi, Gui-Bin Liu, Tianyi Han, Yingying Wu, Jiangxiazi Lin, Gen Long, Yuheng He, Yuan Cai, Yugui Yao, Fan Zhang, Ning Wang

Affiliations

  1. Department of Physics and the Center for 1D/2D Quantum Materials, the Hong Kong University of Science and Technology, Hong Kong, China.
  2. Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, USA.
  3. Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China.

PMID: 27651106 PMCID: PMC5036047 DOI: 10.1038/ncomms12955

Abstract

In few-layer transition metal dichalcogenides (TMDCs), the conduction bands along the ΓK directions shift downward energetically in the presence of interlayer interactions, forming six Q valleys related by threefold rotational symmetry and time reversal symmetry. In even layers, the extra inversion symmetry requires all states to be Kramers degenerate; whereas in odd layers, the intrinsic inversion asymmetry dictates the Q valleys to be spin-valley coupled. Here we report the transport characterization of prominent Shubnikov-de Hass (SdH) oscillations and the observation of the onset of quantum Hall plateaus for the Q-valley electrons in few-layer TMDCs. Universally in the SdH oscillations, we observe a valley Zeeman effect in all odd-layer TMDC devices and a spin Zeeman effect in all even-layer TMDC devices, which provide a crucial information for understanding the unique properties of multi-valley band structures of few-layer TMDCs.

References

  1. Nat Nanotechnol. 2012 Aug;7(8):494-8 - PubMed
  2. Nat Nanotechnol. 2012 Aug;7(8):490-3 - PubMed
  3. Nat Commun. 2016 Feb 09;7:10643 - PubMed
  4. Sci Rep. 2015 Jun 01;5:10699 - PubMed
  5. Phys Rev Lett. 2015 Jan 23;114(3):037401 - PubMed
  6. Nat Commun. 2015 Sep 01;6:8180 - PubMed
  7. Nat Commun. 2012 Jun 06;3:887 - PubMed
  8. Phys Rev Lett. 2013 Feb 8;110(6):066803 - PubMed
  9. Nat Nanotechnol. 2015 Jun;10(6):534-40 - PubMed
  10. Science. 2014 Jun 27;344(6191):1489-92 - PubMed
  11. Nat Nanotechnol. 2012 Nov;7(11):699-712 - PubMed
  12. Phys Rev Lett. 2010 Sep 24;105(13):136805 - PubMed
  13. Nat Nanotechnol. 2016 Jul;11(7):593-7 - PubMed
  14. ACS Nano. 2015 Oct 27;9(10):10402-10 - PubMed
  15. Phys Rev B Condens Matter. 1996 Mar 15;53(12):R7599-R7602 - PubMed
  16. Nat Mater. 2014 Dec;13(12):1128-34 - PubMed
  17. Phys Rev Lett. 2014 Dec 31;113(26):266804 - PubMed
  18. Nat Nanotechnol. 2014 Aug;9(8):611-7 - PubMed
  19. Phys Rev Lett. 2012 May 11;108(19):196802 - PubMed
  20. Phys Rev Lett. 2016 Feb 26;116(8):086601 - PubMed
  21. Nat Commun. 2015 Jun 23;6:7315 - PubMed
  22. Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10451-3 - PubMed

Publication Types