Display options
Share it on

J Cardiovasc Ultrasound. 2016 Sep;24(3):223-228. doi: 10.4250/jcu.2016.24.3.223. Epub 2016 Sep 26.

Myocardial Rotation and Torsion in Child Growth.

Journal of cardiovascular ultrasound

Chang Sin Kim, Sora Park, Lucy Youngmin Eun

Affiliations

  1. Division of Pediatric Cardiology, Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea.

PMID: 27721953 PMCID: PMC5050311 DOI: 10.4250/jcu.2016.24.3.223

Abstract

BACKGROUND: The speckle tracking echocardiography can benefit to assess the regional myocardial deformations. Although, previous reports suggested no significant change in left ventricular (LV) torsion with aging, there are certain differences in LV rotation at the base and apex. The purpose of this study was to evaluate the change and relationship of LV rotation for torsion with aging in children.

METHODS: Forty healthy children were recruited and divided into two groups of twenty based on whether the children were preschool-age (2-6 years of age) or school-age (7-12 years of age). After obtaining conventional echocardiographic data, apical and basal short axis rotation were assessed with speckle tracking echocardiography. LV rotation in the basal and apical short axis planes was determined using six myocardial segments along the central axis.

RESULTS: Apical and basal LV rotation did not show the statistical difference with increased age between preschool- and school-age children. Apical radial strain showed significant higher values in preschool-age children, especially at the anterior (52.8 ± 17.4% vs. 34.7 ± 23.2%,

CONCLUSION: This study revealed the tendency of higher rotation values in preschool-age children than in school-age children. The lesser values of rotation and torsion with increased age during childhood warrant further investigation.

Keywords: Age difference; Children; Left ventricular rotation; Left ventricular torsion

References

  1. IEEE Trans Med Imaging. 1995;14(2):293-300 - PubMed
  2. Circulation. 2004 Nov 9;110(19):3093-9 - PubMed
  3. Circulation. 1997 Aug 5;96(3):801-8 - PubMed
  4. Circulation. 2004 Sep 14;110(11 Suppl 1):II109-14 - PubMed
  5. Circulation. 1991 Apr;83(4):1315-26 - PubMed
  6. Int J Cardiol. 1998 Jan 5;63(1):9-14 - PubMed
  7. Circulation. 1992 Apr;85(4):1572-81 - PubMed
  8. J Am Coll Cardiol. 1992 Mar 1;19(3):619-29 - PubMed
  9. J Am Coll Cardiol. 2005 Jun 21;45(12 ):2034-41 - PubMed
  10. Eur J Pediatr. 2002 Oct;161(10):547-51 - PubMed
  11. Circulation. 1995 Nov 1;92(9 Suppl):II458-66 - PubMed
  12. Circulation. 2004 Oct 5;110(14):e333-6 - PubMed
  13. IEEE Trans Biomed Eng. 1991 Mar;38(3):280-6 - PubMed
  14. J Thorac Cardiovasc Surg. 2003 Jul;126(1):48-55 - PubMed
  15. Circulation. 1995 Jul 1;92(1):130-41 - PubMed
  16. Circulation. 1999 Jul 27;100(4):361-8 - PubMed
  17. AJR Am J Roentgenol. 2002 Apr;178(4):953-8 - PubMed
  18. Circulation. 1992 Dec;86(6):1919-28 - PubMed
  19. Circulation. 1994 Jan;89(1):142-50 - PubMed
  20. Circulation. 1991 Mar;83(3):962-73 - PubMed
  21. Coron Artery Dis. 2000 May;11(3):261-7 - PubMed
  22. Am J Physiol. 1993 Oct;265(4 Pt 2):H1444-9 - PubMed
  23. Circ Res. 2004 Mar 5;94(4):505-13 - PubMed
  24. Circulation. 1995 Dec 15;92(12):3539-48 - PubMed
  25. J Am Coll Cardiol. 1992 Apr;19(5):983-8 - PubMed
  26. Am J Cardiol. 1970 Sep;26(3):221-30 - PubMed
  27. J Physiol. 2003 Apr 15;548(Pt 2):493-505 - PubMed
  28. Eur J Pediatr. 1987 Nov;146(6):545-9 - PubMed
  29. Circulation. 2006 May 30;113(21):2534-41 - PubMed
  30. Circulation. 2005 Mar 8;111(9):1141-7 - PubMed
  31. Anat Rec A Discov Mol Cell Evol Biol. 2004 Mar;277(1):236-47 - PubMed
  32. Cardiovasc Res. 1994 May;28(5):629-35 - PubMed
  33. Eur J Heart Fail. 2003 Aug;5(4):427-34 - PubMed
  34. Eur J Heart Fail. 2004 Oct;6(6):715-22 - PubMed

Publication Types