Display options
Share it on

Eur Heart J. 2016 Nov 14;37(43):3267-3278. doi: 10.1093/eurheartj/ehw450. Epub 2016 Sep 21.

Genomic prediction of coronary heart disease.

European heart journal

Gad Abraham, Aki S Havulinna, Oneil G Bhalala, Sean G Byars, Alysha M De Livera, Laxman Yetukuri, Emmi Tikkanen, Markus Perola, Heribert Schunkert, Eric J Sijbrands, Aarno Palotie, Nilesh J Samani, Veikko Salomaa, Samuli Ripatti, Michael Inouye

Affiliations

  1. Centre for Systems Genomics, School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
  2. Department of Pathology, The University of Melbourne, Parkville, Victoria 3010, Australia.
  3. National Institute for Health and Welfare, Helsinki FI-00271, Finland.
  4. Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria 3010, Australia.
  5. Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FI-00014, Finland.
  6. Deutsches Herzzentrum München, and Technische Universität München, Munich 80636, Germany.
  7. Deutsches Zentrum für Herz- und Kreislauferkrankungen (DZHK), Partner Site Munich Heart Alliance, Munich 81377, Germany.
  8. Department of Internal Medicine, Erasmus Medical Center, Rotterdam, CA 3000, The Netherlands.
  9. Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
  10. Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.
  11. Department of Psychiatry, Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
  12. Department of Cardiovascular Sciences, University of Leicester, BHF Cardiovascular Research Centre, Glenfield Hospital, Groby Rd, Leicester, LE3 9QP, United Kingdom [email protected] [email protected] [email protected] [email protected].
  13. National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Groby Road, Leicester, LE3 9QP, United Kingdom.
  14. National Institute for Health and Welfare, Helsinki FI-00271, Finland [email protected] [email protected] [email protected] [email protected].
  15. Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FI-00014, Finland [email protected] [email protected] [email protected] [email protected].
  16. Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom.
  17. Department of Public Health, University of Helsinki, Helsinki FI-00014, Finland.
  18. Centre for Systems Genomics, School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia [email protected] [email protected] [email protected] [email protected].

PMID: 27655226 PMCID: PMC5146693 DOI: 10.1093/eurheartj/ehw450

Abstract

AIMS: Genetics plays an important role in coronary heart disease (CHD) but the clinical utility of genomic risk scores (GRSs) relative to clinical risk scores, such as the Framingham Risk Score (FRS), is unclear. Our aim was to construct and externally validate a CHD GRS, in terms of lifetime CHD risk and relative to traditional clinical risk scores.

METHODS AND RESULTS: We generated a GRS of 49 310 SNPs based on a CARDIoGRAMplusC4D Consortium meta-analysis of CHD, then independently tested it using five prospective population cohorts (three FINRISK cohorts, combined n = 12 676, 757 incident CHD events; two Framingham Heart Study cohorts (FHS), combined n = 3406, 587 incident CHD events). The GRS was associated with incident CHD (FINRISK HR = 1.74, 95% confidence interval (CI) 1.61-1.86 per S.D. of GRS; Framingham HR = 1.28, 95% CI 1.18-1.38), and was largely unchanged by adjustment for known risk factors, including family history. Integration of the GRS with the FRS or ACC/AHA13 scores improved the 10 years risk prediction (meta-analysis C-index: +1.5-1.6%, P < 0.001), particularly for individuals ≥60 years old (meta-analysis C-index: +4.6-5.1%, P < 0.001). Importantly, the GRS captured substantially different trajectories of absolute risk, with men in the top 20% of attaining 10% cumulative CHD risk 12-18 y earlier than those in the bottom 20%. High genomic risk was partially compensated for by low systolic blood pressure, low cholesterol level, and non-smoking.

CONCLUSIONS: A GRS based on a large number of SNPs improves CHD risk prediction and encodes different trajectories of lifetime risk not captured by traditional clinical risk scores.

© The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

Keywords: Coronary heart disease; Framingham risk score; Genomic risk score; Myocardial infarction; Primary prevention

References

  1. Nature. 2015 Oct 1;526(7571):68-74 - PubMed
  2. Arterioscler Thromb Vasc Biol. 2013 Sep;33(9):2261-6 - PubMed
  3. Genet Epidemiol. 2015 Sep;39(6):439-45 - PubMed
  4. N Engl J Med. 1994 Apr 14;330(15):1041-6 - PubMed
  5. Nat Genet. 2010 Jul;42(7):565-9 - PubMed
  6. Nat Genet. 2015 Oct;47(10):1121-30 - PubMed
  7. Circulation. 2014 Jun 24;129(25 Suppl 2):S49-73 - PubMed
  8. N Engl J Med. 2006 Jul 20;355(3):241-50 - PubMed
  9. PLoS One. 2012;7(7):e40922 - PubMed
  10. JAMA. 2010 Feb 17;303(7):631-7 - PubMed
  11. BMC Med Genet. 2011 Oct 26;12:146 - PubMed
  12. Circ Cardiovasc Genet. 2012 Feb 1;5(1):113-21 - PubMed
  13. Eur Heart J. 2016 Feb 7;37(6):561-7 - PubMed
  14. Lancet. 2010 Oct 23;376(9750):1393-400 - PubMed
  15. Arterioscler Thromb Vasc Biol. 2013 Sep;33(9):2267-72 - PubMed
  16. Lancet. 2015 Jun 6;385(9984):2264-71 - PubMed
  17. Atherosclerosis. 2015 Apr;239(2):451-8 - PubMed
  18. Nat Genet. 2009 Mar;41(3):334-41 - PubMed
  19. PLoS Genet. 2014 Feb 13;10(2):e1004137 - PubMed
  20. Nat Genet. 2013 Jan;45(1):25-33 - PubMed
  21. JAMA. 2001 May 16;285(19):2486-97 - PubMed
  22. Genet Epidemiol. 2013 Feb;37(2):184-95 - PubMed
  23. Ann Intern Med. 1961 Jul;55:33-50 - PubMed
  24. Circulation. 2014 Jun 24;129(25 Suppl 2):S1-45 - PubMed
  25. N Engl J Med. 2012 Jan 26;366(4):321-9 - PubMed
  26. Ann N Y Acad Sci. 1963 May 22;107:539-56 - PubMed
  27. Prev Med. 1975 Dec;4(4):518-25 - PubMed
  28. Nature. 2007 Jun 7;447(7145):661-78 - PubMed
  29. N Engl J Med. 2007 Aug 2;357(5):443-53 - PubMed
  30. Int J Epidemiol. 2010 Apr;39(2):504-18 - PubMed
  31. Nature. 2015 Feb 12;518(7538):197-206 - PubMed
  32. Nature. 2009 Aug 6;460(7256):748-52 - PubMed
  33. N Engl J Med. 2008 Mar 20;358(12):1240-9 - PubMed
  34. PLoS One. 2016 Mar 07;11(3):e0144997 - PubMed

MeSH terms

Publication Types

Grant support