Display options
Share it on

Am J Transl Res. 2016 Sep 15;8(9):3614-3629. eCollection 2016.

Exosome mediated growth effect on the non-growing pre-B acute lymphoblastic leukemia cells at low starting cell density.

American journal of translational research

Sapan J Patel, Costel C Darie, Bayard D Clarkson

Affiliations

  1. Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program1275 York Avenue, Box #96, New York, NY 10065, USA; Clarkson University, Biochemistry and Proteomics Group, Department of Chemistry and Bio-molecular Science, Clarkson University8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA.
  2. Clarkson University, Biochemistry and Proteomics Group, Department of Chemistry and Bio-molecular Science, Clarkson University 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA.
  3. Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program 1275 York Avenue, Box #96, New York, NY 10065, USA.

PMID: 27725845 PMCID: PMC5040663

Abstract

Tumors contain heterogeneous cell populations and achieve dominance by functioning as collective systems. The mechanisms underlying the aberrant growth and interactions between cells are not very well understood. The pre-B acute lymphoblastic leukemia cells we studied were obtained directly from a patient with Ph+ ALL. A new Ph+ ALL cell line (ALL3) was established from the leukemic cells growing as ascitic cells in his pleural fluid. The patient died of his disease shortly after the cells were obtained. ALL3 cells grow well at high cell densities (HD), but not at low cell densities. ALL3 cells are very sensitive to potent tyrosine kinase inhibitors (TKIs) such as Dasatinib and PD166325, but less sensitive to AMN 107, Imatinib, and BMS 214662 (a farnesyl transferase inhibitor). Here, we show that the growth of the LD ALL3 cells can be stimulated to grow in the presence of diffusible, soluble factors secreted by ALL3 cells themselves growing at high density. We also show that exosomes, part of the secretome components, are also able to stimulate the growth of the non-growing LD ALL3 cells and modulate their proliferative behavior. Characterization of the exosome particles also showed that the HD ALL3 cells are able to secret them in large quantities and that they are capable of inducing the growth of the LD ALL3 cells without which they will not survive. Direct stimulation of non-growing LD ALL3 cells using purified exosomes shows that the ALL3 cells can also communicate with each other by means of exchange of exosomes independently of direct cell-cell contacts or diffusible soluble stimulatory factors secreted by HD ALL3 cells.

Keywords: Acute lymphoblastic leukemia; collective behavior; exosome; proliferation; quorum sensing; tyrosine kinase inhibitor

References

  1. Cell Commun Signal. 2015 Feb 03;13:8 - PubMed
  2. Am J Cancer Res. 2016 Jun 01;6(6):1177-230 - PubMed
  3. Cancer Res. 2013 Jan 15;73(2):918-29 - PubMed
  4. Cancer Res. 2002 Aug 1;62(15):4244-55 - PubMed
  5. Med Oncol. 2015 Jan;32(1):372 - PubMed
  6. BMB Rep. 2015 Apr;48(4):223-8 - PubMed
  7. Oncotarget. 2015 Dec 22;6(41):43438-51 - PubMed
  8. PLoS One. 2012;7(8):e42310 - PubMed
  9. Int J Cancer. 2012 May 1;130(9):2033-43 - PubMed
  10. Nat Med. 2012 Jun;18(6):883-91 - PubMed
  11. Leukemia. 1993 Nov;7(11):1683-721 - PubMed
  12. Biochem Soc Trans. 2013 Feb 1;41(1):245-51 - PubMed
  13. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Dec;74(6 Pt 1):061908 - PubMed
  14. J Immunol. 2013 Jan 1;190(1):106-14 - PubMed
  15. Cancer Discov. 2015 Aug;5(8):806-20 - PubMed
  16. Nat Cell Biol. 2010 Jan;12 (1):19-30; sup pp 1-13 - PubMed
  17. Nature. 2012 Jan 18;481(7381):306-13 - PubMed
  18. Cell. 2000 Jan 7;100(1):57-70 - PubMed
  19. Sci Rep. 2016 Jan 29;7:20077 - PubMed
  20. Cell. 2015 Apr 9;161(2):277-90 - PubMed
  21. Haematologica. 2011 Sep;96(9):1302-9 - PubMed
  22. Cell. 2011 Mar 4;144(5):646-74 - PubMed
  23. Nat Cell Biol. 2012 Aug;14(8):777-83 - PubMed
  24. Nat Cell Biol. 2015 Jun;17(6):816-26 - PubMed
  25. J Proteomics. 2010 Sep 10;73(10):1907-20 - PubMed
  26. J Clin Invest. 1976 Nov;58(5):1259-65 - PubMed
  27. J Natl Cancer Inst. 1964 Feb;32:471-95 - PubMed
  28. J Lab Autom. 2013 Feb;18(1):19-29 - PubMed
  29. Nat Rev Mol Cell Biol. 2009 Jul;10(7):445-57 - PubMed
  30. Nat Commun. 2015 May 13;6:7164 - PubMed
  31. C R Biol. 2013 Jan;336(1):13-6 - PubMed
  32. Sci Rep. 2016 Mar 02;6:22519 - PubMed
  33. Anal Biochem. 1979 Sep 15;98(1):53-9 - PubMed
  34. FEBS J. 2012 Jul;279(14):2579-94 - PubMed
  35. Nat Rev Immunol. 2009 Aug;9(8):581-93 - PubMed
  36. Biochim Biophys Acta. 2012 Jul;1820(7):940-8 - PubMed
  37. Nat Rev Cancer. 2016 Mar;16(3):163-72 - PubMed
  38. Leukemia. 1997 Sep;11(9):1404-28 - PubMed
  39. Biochim Biophys Acta. 1981 Jul 6;645(1):63-70 - PubMed
  40. Adv Exp Med Biol. 2014;806:409-42 - PubMed
  41. Mol Biol Cell. 2004 Jan;15(1):332-44 - PubMed
  42. Nat Rev Neurosci. 2016 Mar;17(3):160-72 - PubMed
  43. Angiogenesis. 2012 Mar;15(1):33-45 - PubMed
  44. Leukemia. 2003 Jul;17(7):1211-62 - PubMed
  45. Proteomics. 2010 Feb;10(4):799-827 - PubMed
  46. J Int Med Res. 2011;39(3):740-7 - PubMed
  47. Cell Commun Signal. 2013 Nov 18;11:88 - PubMed
  48. Asian Pac J Cancer Prev. 2013;14(12):7501-8 - PubMed
  49. Nature. 2015 Nov 19;527(7578):329-35 - PubMed
  50. Microbiol Rev. 1979 Dec;43(4):496-518 - PubMed
  51. Cell Calcium. 2006 Apr;39(4):313-24 - PubMed
  52. Cancer Metastasis Rev. 2013 Dec;32(3-4):623-42 - PubMed

Publication Types

Grant support