Display options
Share it on

Mol Ther. 2007 Jun;15(6):1182-1188. doi: 10.1038/sj.mt.6300157. Epub 2016 Dec 07.

Safety and Efficacy of a Lentiviral Vector Containing Three Anti-HIV Genes-CCR5 Ribozyme, Tat-rev siRNA, and TAR Decoy-in SCID-hu Mouse-Derived T Cells.

Molecular therapy : the journal of the American Society of Gene Therapy

Joseph Anderson, Ming-Jie Li, Brent Palmer, Leila Remling, Shirley Li, Priscilla Yam, Jiing-Kuan Yee, John Rossi, John Zaia, Ramesh Akkina

Affiliations

  1. Department of Microbiology, Immunology and Pathology, Colorado State University, Fort, Collins, Colorado, USA.
  2. Division of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, California, USA.
  3. Department of Microbiology, Immunology and Pathology, Colorado State University, Fort, Collins, Colorado, USA. Electronic address: [email protected].

PMID: 28182923 DOI: 10.1038/sj.mt.6300157

Abstract

Gene therapeutic strategies show promise in controlling human immunodeficiency virus (HIV) infection and in restoring immunological function. A number of efficacious anti-HIV gene constructs have been described so far, including small interfering RNAs (siRNAs), RNA decoys, transdominant proteins, and ribozymes, each with a different mode of action. However, as HIV is prone to generating escape mutants, the use of a single anti-HIV construct would not be adequate to afford long range-viral protection. On this basis, a combination of highly potent anti-HIV genes-namely, a short hairpin siRNA (shRNA) targeting rev and tat, a transactivation response (TAR) decoy, and a CCR5 ribozyme-have been inserted into a third-generation lentiviral vector. Our recent in vitro studies with this construct, Triple-R, established its efficacy in both T-cell lines and CD34 cell-derived macrophages. In this study, we have evaluated this combinatorial vector in vivo. Vector-transduced CD34 cells were injected into severe combined immunodeficiency (SCID)-hu mouse thy/liv grafts to determine their capacity to give rise to T cells. Our results show that phenotypically normal transgenic T cells are generated that are able to resist HIV-1 infection when challenged in vitro. These important attributes of this combinatorial vector show its promise as an excellent candidate for use in human clinical trials.

Copyright © 2007 The American Society of Gene Therapy. Published by Elsevier Inc. All rights reserved.

Publication Types