Display options
Share it on

Nat Commun. 2017 Jan 20;8:14010. doi: 10.1038/ncomms14010.

Quantum interference between transverse spatial waveguide modes.

Nature communications

Aseema Mohanty, Mian Zhang, Avik Dutt, Sven Ramelow, Paulo Nussenzveig, Michal Lipson

Affiliations

  1. School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA.
  2. Department of Electrical Engineering, Columbia University, New York, New York 10027, USA.
  3. School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
  4. School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA.
  5. Institute for Physics, Humboldt-University Berlin, 12489 Berlin, Germany.
  6. Instituto de Fisica, Universidade de São Paulo, P.O. Box 66318, São Paulo 05315-970, Brazil.
  7. Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, USA.

PMID: 28106036 PMCID: PMC5263888 DOI: 10.1038/ncomms14010

Abstract

Integrated quantum optics has the potential to markedly reduce the footprint and resource requirements of quantum information processing systems, but its practical implementation demands broader utilization of the available degrees of freedom within the optical field. To date, integrated photonic quantum systems have primarily relied on path encoding. However, in the classical regime, the transverse spatial modes of a multi-mode waveguide have been easily manipulated using the waveguide geometry to densely encode information. Here, we demonstrate quantum interference between the transverse spatial modes within a single multi-mode waveguide using quantum circuit-building blocks. This work shows that spatial modes can be controlled to an unprecedented level and have the potential to enable practical and robust quantum information processing.

References

  1. Science. 2008 May 2;320(5876):646-9 - PubMed
  2. Nat Commun. 2014;5:3069 - PubMed
  3. Nature. 2001 Jul 19;412(6844):313-6 - PubMed
  4. Science. 2004 Nov 19;306(5700):1330-6 - PubMed
  5. Science. 2009 Aug 7;325(5941):722-5 - PubMed
  6. Opt Express. 2014 Apr 7;22(7):8525-32 - PubMed
  7. Appl Opt. 2006 Jul 10;45(20):4864-72 - PubMed
  8. Nat Commun. 2011;2:224 - PubMed
  9. Opt Express. 2014 Nov 3;22(22):27617-31 - PubMed
  10. Phys Rev Lett. 2005 Dec 31;95(26):260501 - PubMed
  11. Opt Express. 2014 Jun 2;22(11):12799-807 - PubMed
  12. Opt Express. 2012 Mar 26;20(7):7221-36 - PubMed
  13. Nat Commun. 2012;3:1217 - PubMed
  14. Opt Express. 2014 Dec 15;22(25):31371-8 - PubMed
  15. Opt Express. 2012 Jun 4;20(12):13425-39 - PubMed
  16. Opt Express. 2014 Sep 8;22(18):22172-83 - PubMed
  17. Nat Commun. 2014 Jun 25;5:4249 - PubMed
  18. Science. 2013 Feb 15;339(6121):794-8 - PubMed
  19. Phys Rev Lett. 2004 Jul 30;93(5):053601 - PubMed
  20. Nat Commun. 2016 Jun 20;7:11985 - PubMed
  21. Science. 2013 Feb 15;339(6121):798-801 - PubMed
  22. Opt Express. 2010 Nov 8;18(23):23598-607 - PubMed
  23. Phys Rev Lett. 1987 Nov 2;59(18):2044-2046 - PubMed

Publication Types