Display options
Share it on

Nat Cell Biol. 2017 Mar 01;19(2):155-163. doi: 10.1038/ncb3472. Epub 2017 Mar 01.

Tissue-scale coordination of cellular behaviour promotes epidermal wound repair in live mice.

Nature cell biology

Sangbum Park, David G Gonzalez, Boris Guirao, Jonathan D Boucher, Katie Cockburn, Edward D Marsh, Kailin R Mesa, Samara Brown, Panteleimon Rompolas, Ann M Haberman, Yohanns Bellaïche, Valentina Greco

Affiliations

  1. Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA.
  2. Department of Laboratory Medicine, Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut 06510, USA.
  3. Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit (CNRS UMR3215/Inserm U934), Institut Curie, 75248 Paris Cedex 05, France.
  4. Departments of Cell Biology and Dermatology, Yale Stem Cell Center, Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut 06510, USA.

PMID: 28248302 PMCID: PMC5581297 DOI: 10.1038/ncb3472

Abstract

Tissue repair is fundamental to our survival as tissues are challenged by recurrent damage. During mammalian skin repair, cells respond by migrating and proliferating to close the wound. However, the coordination of cellular repair behaviours and their effects on homeostatic functions in a live mammal remains unclear. Here we capture the spatiotemporal dynamics of individual epithelial behaviours by imaging wound re-epithelialization in live mice. Differentiated cells migrate while the rate of differentiation changes depending on local rate of migration and tissue architecture. Cells depart from a highly proliferative zone by directionally dividing towards the wound while collectively migrating. This regional coexistence of proliferation and migration leads to local expansion and elongation of the repairing epithelium. Finally, proliferation functions to pattern and restrict the recruitment of undamaged cells. This study elucidates the interplay of cellular repair behaviours and consequent changes in homeostatic behaviours that support tissue-scale organization of wound re-epithelialization.

References

  1. Wound Repair Regen. 1994 Mar-Apr;2(2):138-43 - PubMed
  2. Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8551-6 - PubMed
  3. J Cell Sci. 1992 Jul;102 ( Pt 3):387-92 - PubMed
  4. Science. 2002 Apr 26;296(5568):747-9 - PubMed
  5. J Cell Biol. 2001 Aug 20;154(4):799-814 - PubMed
  6. Nat Methods. 2009 Feb;6(2):153-9 - PubMed
  7. Science. 2014 Mar 21;343(6177):1353-6 - PubMed
  8. Cell. 2016 Mar 10;164(6):1212-25 - PubMed
  9. Curr Med Res Opin. 1982;7(Suppl 2):26-8 - PubMed
  10. Science. 2007 Aug 3;317(5838):666-70 - PubMed
  11. J Cell Biol. 2013 Nov 25;203(4):691-709 - PubMed
  12. Nat Cell Biol. 2015 Mar;17(3):276-87 - PubMed
  13. Cell Stem Cell. 2014 Dec 4;15(6):683-6 - PubMed
  14. Science. 2004 Jan 16;303(5656):359-63 - PubMed
  15. Nat Neurosci. 2010 Jan;13(1):133-40 - PubMed
  16. Nature. 2012 Jul 26;487(7408):496-9 - PubMed
  17. Wound Repair Regen. 2005 Sep-Oct;13(5):468-79 - PubMed
  18. Chem Biol. 1995 Sep;2(9):575-9 - PubMed
  19. Dev Biol. 1980 Apr;76(1):26-46 - PubMed
  20. Genesis. 2007 Sep;45(9):593-605 - PubMed
  21. J Cell Biol. 1968 Oct;39(1):135-51 - PubMed
  22. Nat Rev Genet. 2002 Mar;3(3):199-209 - PubMed
  23. Science. 2016 Jun 17;352(6292):1471-4 - PubMed
  24. Sci Transl Med. 2014 Dec 3;6(265):265sr6 - PubMed
  25. J Biol Chem. 2012 Dec 21;287(52):43359-69 - PubMed
  26. Development. 2014 May;141(9):1814-20 - PubMed
  27. FASEB J. 2003 Mar;17(3):397-406 - PubMed
  28. J Invest Dermatol. 2004 Nov;123(5):982-9 - PubMed
  29. Stem Cell Reports. 2015 Jun 9;4(6):961-6 - PubMed
  30. Nat Commun. 2014 Mar 26;5:3543 - PubMed
  31. Nature. 2008 May 15;453(7193):314-21 - PubMed
  32. J Biol Chem. 2010 Oct 15;285(42):32242-50 - PubMed
  33. Cancer Res. 2015 Mar 15;75(6):1035-45 - PubMed
  34. Nature. 2015 Jun 4;522(7554):94-7 - PubMed
  35. Nat Protoc. 2015 Jul;10(7):1116-30 - PubMed
  36. J Cell Sci. 2009 Jan 15;122(Pt 2):278-88 - PubMed
  37. Nat Protoc. 2007;2(2):329-33 - PubMed
  38. Dev Cell. 2002 Sep;3(3):367-81 - PubMed
  39. Exp Cell Res. 1978 Oct 1;116(1):15-9 - PubMed
  40. Cell Rep. 2015 Nov 17;13(7):1380-1395 - PubMed
  41. Nat Med. 2014 Aug;20(8):847-56 - PubMed
  42. Science. 1994 Nov 4;266(5186):819-22 - PubMed
  43. J Invest Dermatol. 2008 Apr;128(4):1039-49 - PubMed
  44. J Clin Invest. 1992 Jun;89(6):1892-901 - PubMed
  45. Nat Rev Mol Cell Biol. 2011 Aug 23;12(9):565-80 - PubMed
  46. Exp Eye Res. 2002 Feb;74(2):199-204 - PubMed
  47. J Cell Biol. 2004 Jul 19;166(2):261-72 - PubMed
  48. Curr Opin Cell Biol. 2016 Oct;42:29-37 - PubMed
  49. Elife. 2015 Dec 12;4:null - PubMed
  50. Nature. 2013 Oct 24;502(7472):513-8 - PubMed
  51. J Cell Sci. 2009 Sep 15;122(Pt 18):3209-13 - PubMed
  52. J Invest Dermatol. 2006 Feb;126(2):497-502 - PubMed
  53. Cell. 2016 Nov 17;167(5):1323-1338.e14 - PubMed
  54. J Invest Dermatol. 1970 Jul;55(1):20-5 - PubMed
  55. Nat Commun. 2013;4:2626 - PubMed
  56. Oncogene. 1999 Jun 17;18(24):3593-607 - PubMed
  57. J Invest Dermatol. 2007 May;127(5):1018-29 - PubMed
  58. J Cell Sci. 2007 Apr 15;120(Pt 8):1480-90 - PubMed

Publication Types

Grant support