Display options
Share it on

Nat Commun. 2017 Mar 27;8:14885. doi: 10.1038/ncomms14885.

Terahertz and mid-infrared plasmons in three-dimensional nanoporous graphene.

Nature communications

Fausto D'Apuzzo, Alba R Piacenti, Flavio Giorgianni, Marta Autore, Mariangela Cestelli Guidi, Augusto Marcelli, Ulrich Schade, Yoshikazu Ito, Mingwei Chen, Stefano Lupi

Affiliations

  1. Istituto Italiano di Tecnologia and Dipartimento di Fisica, Università di Roma La Sapienza, Piazzale Aldo Moro 2, I-00185 Roma, Italy.
  2. Advanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
  3. INFN and University of Rome La Sapienza, Department of Physics, P.le A. Moro 2, 00185 Rome, Italy.
  4. INFN-LNF, via E. Fermi 40, 00044 Frascati, Italy.
  5. Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH, Methoden der Materialentwicklung, Albert-Einstein-Strasse 15, 12489 Berlin, Germany.
  6. WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.
  7. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
  8. CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan.
  9. CNR-IOM and Department of Physics, University of Rome La Sapienza, P.le A. Moro 2, 00185, Rome, Italy.

PMID: 28345584 PMCID: PMC5378955 DOI: 10.1038/ncomms14885

Abstract

Two-dimensional (2D) graphene emerged as an outstanding material for plasmonic and photonic applications due to its charge-density tunability, high electron mobility, optical transparency and mechanical flexibility. Recently, novel fabrication processes have realised a three-dimensional (3D) nanoporous configuration of high-quality monolayer graphene which provides a third dimension to this material. In this work, we investigate the optical behaviour of nanoporous graphene by means of terahertz and infrared spectroscopy. We reveal the presence of intrinsic 2D Dirac plasmons in 3D nanoporous graphene disclosing strong plasmonic absorptions tunable from terahertz to mid-infrared via controllable doping level and porosity. In the far-field the spectral width of these absorptions is large enough to cover most of the mid-Infrared fingerprint region with a single plasmon excitation. The enhanced surface area of nanoporous structures combined with their broad band plasmon absorption could pave the way for novel and competitive nanoporous-graphene based plasmonic-sensors.

References

  1. Nano Lett. 2010 Dec 8;10(12):4975-80 - PubMed
  2. Phys Rev Lett. 2008 Mar 21;100(11):117401 - PubMed
  3. Nano Lett. 2011 Aug 10;11(8):3370-7 - PubMed
  4. Nano Lett. 2014 Feb 12;14(2):894-900 - PubMed
  5. Nanoscale. 2016 Feb 28;8(8):4667-71 - PubMed
  6. Nat Nanotechnol. 2013 Aug;8(8):556-60 - PubMed
  7. Adv Mater. 2014 Jun 25;26(24):4145-50 - PubMed
  8. Adv Mater. 2015 Oct 28;27(40):6137-43 - PubMed
  9. Nano Lett. 2005 Dec;5(12):2465-9 - PubMed
  10. Adv Mater. 2016 Dec;28(46):10304-10310 - PubMed
  11. Adv Mater. 2015 Aug 5;27(29):4302-7 - PubMed
  12. Nat Nanotechnol. 2011 Sep 04;6(10):630-4 - PubMed
  13. Nature. 2012 Jul 5;487(7405):77-81 - PubMed
  14. ACS Nano. 2014 Feb 25;8(2):1086-101 - PubMed
  15. Angew Chem Int Ed Engl. 2014 May 5;53(19):4822-6 - PubMed
  16. Nano Lett. 2012 May 9;12(5):2470-4 - PubMed
  17. Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19227-32 - PubMed
  18. Nature. 2012 Jul 5;487(7405):82-5 - PubMed
  19. Nanoscale. 2015 Mar 21;7(11):4598-810 - PubMed
  20. Angew Chem Int Ed Engl. 2015 Feb 9;54(7):2131-6 - PubMed
  21. ACS Nano. 2013 Mar 26;7(3):2388-95 - PubMed

Publication Types