Display options
Share it on

Nat Commun. 2017 Feb 22;8:14524. doi: 10.1038/ncomms14524.

Mass spectrometric monitoring of interfacial photoelectron transfer and imaging of active crystalline facets of semiconductors.

Nature communications

Hongying Zhong, Juan Zhang, Xuemei Tang, Wenyang Zhang, Ruowei Jiang, Rui Li, Disong Chen, Peng Wang, Zhiwei Yuan

Affiliations

  1. Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine, Institute of Public Health and Molecular Medicine Analysis, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China.

PMID: 28224986 PMCID: PMC5322523 DOI: 10.1038/ncomms14524

Abstract

Monitoring of interfacial electron transfer (ET) in situ is important to understand the ET mechanism and designing efficient photocatalysts. We describe herein a mass spectrometric approach to investigate the ultrafast transfer of photoelectrons that are generated by ultraviolet irradiation on surfaces of semiconductor nanoparticles or crystalline facets. The mass spectrometric approach can not only untargetedly detect various intermediates but also monitor their reactivity through associative or dissociative photoelectron capture dissociation, as well as electron detachment dissociation of adsorbed molecules. Proton-coupled electron transfer and proton-uncoupled electron transfer with radical initiated polymerization or hydroxyl radical abstraction have been unambiguously demonstrated with the mass spectrometric approach. Active crystalline facets of titanium dioxide for photocatalytic degradation of juglone and organochlorine dichlorodiphenyltrichloroethane are visualized with mass spectrometry imaging based on ion scanning and spectral reconstruction. This work provides a new technique for studying photo-electric properties of various materials.

References

  1. Angew Chem Int Ed Engl. 2009;48(49):9285-9 - PubMed
  2. Chem Soc Rev. 2013 Apr 7;42(7):2568-80 - PubMed
  3. Science. 2010 Jun 18;328(5985):1543-7 - PubMed
  4. Angew Chem Int Ed Engl. 2010 Nov 8;49(46):8593-7 - PubMed
  5. Chemphyschem. 2007 Jun 25;8(9):1321-9 - PubMed
  6. Sci Rep. 2015 Mar 09;5:8893 - PubMed
  7. ChemSusChem. 2015 Jun 8;8(11):1838-40 - PubMed
  8. Science. 2012 Jun 8;336(6086):1298-301 - PubMed
  9. Inorg Chem. 2014 May 19;53(10):5373-83 - PubMed
  10. Phys Rev Lett. 2007 Nov 9;99(19):197001 - PubMed
  11. J Am Chem Soc. 2015 Jul 8;137(26):8404-7 - PubMed
  12. Environ Sci Technol. 2010 Feb 15;44(4):1392-8 - PubMed
  13. Science. 1992 Nov 27;258(5087):1474-6 - PubMed
  14. J Am Chem Soc. 2011 May 11;133(18):7197-204 - PubMed
  15. Nat Chem. 2013 Aug;5(8):711-7 - PubMed
  16. Chem Rev. 2014 Dec 24;114(24):12330-96 - PubMed
  17. Environ Sci Technol. 2010 Sep 1;44(17):6849-54 - PubMed
  18. Angew Chem Int Ed Engl. 2009;48(27):4910-43 - PubMed
  19. Annu Rev Phys Chem. 2005;56:491-519 - PubMed
  20. ACS Nano. 2013 Jan 22;7(1):263-75 - PubMed
  21. Anal Chim Acta. 2016 Jan 28;905:100-5 - PubMed
  22. J Am Chem Soc. 2012 Mar 7;134(9):3946-9 - PubMed
  23. Nat Chem. 2014 Sep;6(9):765-73 - PubMed
  24. Sci Rep. 2016 Apr 13;6:24422 - PubMed
  25. Annu Rev Phys Chem. 2007;58:143-84 - PubMed

Publication Types