Display options
Share it on

Foods. 2016 Jun 28;5(3). doi: 10.3390/foods5030048.

Modified Atmosphere Systems and Shelf Life Extension of Fish and Fishery Products.

Foods (Basel, Switzerland)

Christina A Mireles DeWitt, Alexandra C M Oliveira

Affiliations

  1. OSU Seafood Research & Education Center Experiment Station, Department of Food Science and Technology, Oregon State University, Astoria, OR 97103, USA. [email protected].
  2. BluWrap, 766 Harrison Street #102, San Francisco, CA 94107, USA. [email protected].
  3. Kodiak Seafood and Marine Science Center, School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 118 Trident Way, Kodiak, AK 99615, USA. [email protected].

PMID: 28231143 PMCID: PMC5302388 DOI: 10.3390/foods5030048

Abstract

This review aims at summarizing the findings of studies published over the past 15 years on the application of modified atmosphere (MA) systems for shelf life extension of fish and fishery products. This review highlights the importance of CO₂ in the preservation of seafood products, and underscores the benefits of combining MA technology with product storage in the superchilled temperature range. It is generally accepted that MA technology cannot improve product quality and should not be utilized as a substitute for good sanitation and strict temperature control. Benefits derived from application of MA, however, can significantly impact preservation of product quality and it subsequent shelf-life. For this reason, this review is the first of its kind to propose detailed handling and quality guidelines for fresh fish to realize the maximum benefit of MA technology.

Keywords: controlled atmosphere systems; fish; fish and fishery products; fishery products; modified atmosphere packaging; seafood; seafood shelf life

References

  1. Int J Food Microbiol. 2012 Nov 1;160(1):65-75 - PubMed
  2. Int J Food Microbiol. 2011 Oct 3;149(3):247-53 - PubMed
  3. Food Microbiol. 2015 Oct;51:144-53 - PubMed
  4. J Agric Food Chem. 2008 Sep 24;56(18):8658-63 - PubMed
  5. Meat Sci. 2012 Jan;90(1):52-9 - PubMed
  6. J Food Sci. 2007 Nov;72 (9):M423-30 - PubMed
  7. J Sci Food Agric. 2013 Jul;93(9):2179-87 - PubMed
  8. Food Microbiol. 2007 Jun;24(4):362-71 - PubMed
  9. J Food Sci. 2009 Aug;74(6):M258-67 - PubMed
  10. Food Microbiol. 2012 May;30(1):164-72 - PubMed
  11. Int J Food Microbiol. 2002 Jul 25;77(1-2):161-8 - PubMed
  12. J Food Sci. 2013 May;78(5):M725-30 - PubMed
  13. Int J Food Microbiol. 2013 Oct 15;167(2):117-23 - PubMed
  14. J Food Sci. 2010 May;75(4):M243-51 - PubMed
  15. J Food Sci. 2011 Apr;76(3):S185-91 - PubMed
  16. J Food Sci. 2011 Sep;76(7):C974-9 - PubMed
  17. J Appl Microbiol. 2005;99(1):66-76 - PubMed
  18. Int J Food Microbiol. 2007 Jun 10;117(1):68-75 - PubMed
  19. J Food Sci. 2012 Jan;77(1):S84-90 - PubMed
  20. Food Microbiol. 2014 Jun;40:9-17 - PubMed
  21. Food Microbiol. 2012 May;30(1):226-32 - PubMed
  22. Int J Food Microbiol. 1993 Sep;19(4):283-94 - PubMed
  23. J Appl Microbiol. 2002;92(4):790-9 - PubMed
  24. Crit Rev Food Sci Nutr. 1990;29(5):301-31 - PubMed
  25. Curr Opin Biotechnol. 2002 Jun;13(3):262-6 - PubMed
  26. J Food Sci. 2008 Jan;73(1):S11-9 - PubMed
  27. Meat Sci. 2008 Sep;80(1):43-65 - PubMed
  28. J Food Sci. 2013 Dec;78(12 ):M1878-84 - PubMed
  29. Int J Food Microbiol. 2013 Jan 1;160(3):227-38 - PubMed
  30. Food Chem. 2008 Nov 15;111(2):329-39 - PubMed
  31. J Food Prot. 2007 May;70(5):1159-64 - PubMed
  32. Int J Food Microbiol. 2008 Dec 10;128(2):226-33 - PubMed
  33. Int J Food Microbiol. 2012 Jun 15;157(1):16-27 - PubMed
  34. Int J Food Microbiol. 2013 Nov 1;167(3):369-77 - PubMed
  35. J Food Sci. 2008 Apr;73(3):S124-33 - PubMed
  36. Food Microbiol. 2015 May;47:111-5 - PubMed
  37. Food Chem. 2014 Jul 15;155:126-31 - PubMed
  38. J Food Sci. 2010 Sep;75(7):M406-11 - PubMed

Publication Types