Display options
Share it on

Front Endocrinol (Lausanne). 2017 Mar 14;8:44. doi: 10.3389/fendo.2017.00044. eCollection 2017.

High-Fat Feeding Does Not Disrupt Daily Rhythms in Female Mice because of Protection by Ovarian Hormones.

Frontiers in endocrinology

Brian T Palmisano, John M Stafford, Julie S Pendergast

Affiliations

  1. Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine , Nashville, TN , USA.
  2. Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA; VA Tennessee Valley Healthcare System, Nashville, TN, USA; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.
  3. Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Biology, University of Kentucky, Lexington, KY, USA.

PMID: 28352249 PMCID: PMC5348546 DOI: 10.3389/fendo.2017.00044

Abstract

Obesity in women is increased by the loss of circulating estrogen after menopause. Shift work, which disrupts circadian rhythms, also increases the risk for obesity. It is not known whether ovarian hormones interact with the circadian system to protect females from obesity. During high-fat feeding, male C57BL/6J mice develop profound obesity and disruption of daily rhythms. Since C57BL/6J female mice did not develop diet-induced obesity (during 8 weeks of high-fat feeding), we first determined if daily rhythms in female mice were resistant to disruption from high-fat diet. We fed female PERIOD2:LUCIFERASE mice 45% high-fat diet for 1 week and measured daily rhythms. Female mice retained robust rhythms of eating behavior and locomotor activity during high-fat feeding that were similar to chow-fed females. In addition, the phase of the liver molecular timekeeping (PER2:LUC) rhythm was not altered by high-fat feeding in females. To determine if ovarian hormones protected daily rhythms in female mice from high-fat feeding, we analyzed rhythms in ovariectomized mice. During high-fat feeding, the amplitudes of the eating behavior and locomotor activity rhythms were reduced in ovariectomized females. Liver PER2:LUC rhythms were also advanced by ~4 h by high-fat feeding, but not chow, in ovariectomized females. Together these data show circulating ovarian hormones protect the integrity of daily rhythms in female mice during high-fat feeding.

Keywords: C57BL/6J; bioluminescence; circadian; eating rhythm; female; high-fat diet; liver; obesity

References

  1. PLoS One. 2015 Jul 21;10(7):e0133761 - PubMed
  2. Obesity (Silver Spring). 2009 Nov;17(11):2100-2 - PubMed
  3. Neuron. 2001 May;30(2):525-36 - PubMed
  4. Stroke. 2001 May;32(5):1104-11 - PubMed
  5. Cell Metab. 2012 Jun 6;15(6):848-60 - PubMed
  6. PLoS Med. 2011 Dec;8(12):e1001141 - PubMed
  7. J Clin Endocrinol Metab. 2003 Jun;88(6):2404-11 - PubMed
  8. Endocrinology. 2015 Aug;156(8):2999-3011 - PubMed
  9. Theor Biol Med Model. 2014 Apr 11;11:16 - PubMed
  10. Diabetes. 2013 Feb;62(2):424-34 - PubMed
  11. Nutr Res. 2016 Apr;36(4):320-7 - PubMed
  12. Int J Obes Relat Metab Disord. 2003 Nov;27(11):1353-8 - PubMed
  13. Proc Natl Acad Sci U S A. 2004 Apr 13;101(15):5339-46 - PubMed
  14. Horm Behav. 1972 Sep;3(3):213-9 - PubMed
  15. Endocrinology. 2014 Jul;155(7):2613-23 - PubMed
  16. Chronobiol Int. 2009 Jul;26(5):926-41 - PubMed
  17. Eur J Neurosci. 2013 Apr;37(8):1350-6 - PubMed
  18. Obesity (Silver Spring). 2014 Dec;22(12 ):2489-93 - PubMed
  19. Science. 2005 May 13;308(5724):1043-5 - PubMed
  20. Endocrinology. 2011 Jul;152(7):2655-64 - PubMed
  21. Cell. 2001 Jun 1;105(5):683-94 - PubMed
  22. Proc Natl Acad Sci U S A. 2016 Mar 8;113(10):E1402-11 - PubMed
  23. J Intern Med. 2007 Mar;261(3):285-92 - PubMed
  24. Biochem Cell Biol. 2012 Apr;90(2):124-41 - PubMed
  25. Physiol Behav. 1976 Aug;17(2):201-8 - PubMed
  26. Science. 2000 Apr 28;288(5466):682-5 - PubMed
  27. Cell. 2013 Dec 19;155(7):1464-78 - PubMed
  28. Diabetes. 1988 Sep;37(9):1163-7 - PubMed
  29. NCHS Data Brief. 2012 Jan;(82):1-8 - PubMed
  30. Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4453-8 - PubMed
  31. Brain Res. 1978 Feb 24;142(2):384-9 - PubMed
  32. J Lipid Res. 2016 Aug;57(8):1541-51 - PubMed
  33. Endocr Rev. 2013 Jun;34(3):309-38 - PubMed
  34. Endocrine. 2008 Apr;33(2):118-25 - PubMed
  35. Int J Obes (Lond). 2010 Jun;34(6):989-1000 - PubMed
  36. Cell Metab. 2007 Nov;6(5):414-21 - PubMed
  37. J Neuroendocrinol. 2008 Nov;20(11):1270-7 - PubMed
  38. J Physiol. 2008 Dec 15;586(24):5901-10 - PubMed
  39. Sleep. 2015 Dec 01;38(12):1849-60 - PubMed
  40. Methods Enzymol. 2005;393:288-301 - PubMed
  41. PLoS One. 2015 Sep 14;10(9):e0137970 - PubMed
  42. Am J Physiol Endocrinol Metab. 2008 Nov;295(5):E1025-31 - PubMed
  43. Front Psychol. 2014 Mar 04;5:177 - PubMed
  44. Chronobiol Int. 2014 Jun;31(5):637-44 - PubMed
  45. PLoS Biol. 2004 Nov;2(11):e377 - PubMed
  46. Endocrinology. 2001 Nov;142(11):4751-7 - PubMed
  47. Nature. 2010 Jul 29;466(7306):627-31 - PubMed
  48. Nat Med. 2003 Jan;9(1):82-6 - PubMed
  49. Nutr J. 2009 Feb 17;8:11 - PubMed
  50. Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):15172-7 - PubMed

Publication Types

Grant support