Display options
Share it on

Oncoimmunology. 2017 Jan 11;6(3):e1277306. doi: 10.1080/2162402X.2016.1277306. eCollection 2017.

Cergutuzumab amunaleukin (CEA-IL2v), a CEA-targeted IL-2 variant-based immunocytokine for combination cancer immunotherapy: Overcoming limitations of aldesleukin and conventional IL-2-based immunocytokines.

Oncoimmunology

Christian Klein, Inja Waldhauer, Valeria G Nicolini, Anne Freimoser-Grundschober, Tapan Nayak, Danielle J Vugts, Claire Dunn, Marije Bolijn, Jörg Benz, Martine Stihle, Sabine Lang, Michaele Roemmele, Thomas Hofer, Erwin van Puijenbroek, David Wittig, Samuel Moser, Oliver Ast, Peter Brünker, Ingo H Gorr, Sebastian Neumann, Maria Cristina de Vera Mudry, Heather Hinton, Flavio Crameri, Jose Saro, Stefan Evers, Christian Gerdes, Marina Bacac, Guus van Dongen, Ekkehard Moessner, Pablo Umaña

Affiliations

  1. Roche Pharma Research & Early Development, Roche Innovation Center Zurich , Schlieren, Switzerland.
  2. Roche Pharma Research & Early Development, Roche Innovation Center Basel , Basel, Switzerland.
  3. Roche Pharma Research & Early Development, Department of Radiology & Nuclear Medicine, VU University Medical Center , Amsterdam, the Netherlands.
  4. Roche Pharma Research & Early Development, Roche Innovation Center Munich , Penzberg, Germany.

PMID: 28405498 PMCID: PMC5384349 DOI: 10.1080/2162402X.2016.1277306

Abstract

We developed cergutuzumab amunaleukin (CEA-IL2v, RG7813), a novel monomeric CEA-targeted immunocytokine, that comprises a single IL-2 variant (IL2v) moiety with abolished CD25 binding, fused to the C-terminus of a high affinity, bivalent carcinoembryonic antigen (CEA)-specific antibody devoid of Fc-mediated effector functions. Its molecular design aims to (i) avoid preferential activation of regulatory T-cells vs. immune effector cells by removing CD25 binding; (ii) increase the therapeutic index of IL-2 therapy by (a) preferential retention at the tumor by having a lower dissociation rate from CEA-expressing cancer cells vs. IL-2R-expressing cells, (b) avoiding any FcγR-binding and Fc effector functions and (c) reduced binding to endothelial cells expressing CD25; and (iii) improve the pharmacokinetics, and thus convenience of administration, of IL-2. The crystal structure of the IL2v-IL-2Rβγ complex was determined and CEA-IL2v activity was assessed using human immune effector cells. Tumor targeting was investigated in tumor-bearing mice using

Keywords: Antibody; CEA; CEACAM5; IL-2; IL2v; Immunocytokine

References

  1. J Immunother. 2013 Nov-Dec;36(9):477-89 - PubMed
  2. Science. 2006 Mar 31;311(5769):1924-7 - PubMed
  3. J Clin Immunol. 2008 Nov;28(6):635-9 - PubMed
  4. Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11906-11 - PubMed
  5. Clin Cancer Res. 2011 Jun 1;17(11):3673-85 - PubMed
  6. J Nucl Med. 2005 Nov;46(11):1898-906 - PubMed
  7. Nat Rev Immunol. 2012 Feb 17;12(3):180-90 - PubMed
  8. MAbs. 2014;6(6):1571-84 - PubMed
  9. Expert Opin Biol Ther. 2008 May;8(5):609-32 - PubMed
  10. Oncoimmunology. 2013 Nov 1;2(11):e26442 - PubMed
  11. Nat Biotechnol. 1998 Jul;16(7):677-81 - PubMed
  12. Nat Immunol. 2005 Nov;6(11):1071-2 - PubMed
  13. Mol Pharm. 2015 Jun 1;12 (6):1836-47 - PubMed
  14. Nat Med. 2016 Dec;22(12 ):1402-1410 - PubMed
  15. Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3320-5 - PubMed
  16. Protein Eng Des Sel. 2016 Oct;29(10):457-66 - PubMed
  17. Folia Morphol (Warsz). 2007 Aug;66(3):159-66 - PubMed
  18. Clin Cancer Res. 2016 Feb 1;22(3):596-608 - PubMed
  19. Cancer Immunol Res. 2015 Mar;3(3):219-27 - PubMed
  20. Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10256-60 - PubMed
  21. J Clin Lab Anal. 1991;5(5):344-66 - PubMed
  22. Cell Mol Life Sci. 2012 May;69(10):1597-608 - PubMed
  23. Immunity. 2015 May 19;42(5):815-25 - PubMed
  24. J Immunol. 2013 Jun 15;190(12):6230-8 - PubMed
  25. Eur J Cancer. 2013 Jan;49(1):35-44 - PubMed
  26. Cancer Invest. 2005;23(4):338-51 - PubMed
  27. Drug Discov Today. 2012 Jun;17(11-12):583-90 - PubMed
  28. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4313-7 - PubMed
  29. Clin Cancer Res. 2014 Feb 15;20(4):1055 - PubMed
  30. Nat Immunol. 2012 Dec;13(12):1187-95 - PubMed
  31. Clin Cancer Res. 2016 Jul 1;22(13):3286-97 - PubMed
  32. Cancer Immunol Res. 2016 Nov;4(11):983-994 - PubMed
  33. Clin Cancer Res. 2016 Sep 1;22(17):4417-27 - PubMed
  34. J Biol Chem. 2016 Nov 11;291(46):23869-23881 - PubMed
  35. J Immunol. 2014 Jun 15;192(12):5451-8 - PubMed
  36. Science. 2005 Jun 3;308(5727):1477-80 - PubMed
  37. Nature. 2014 Nov 27;515(7528):572-6 - PubMed
  38. PLoS One. 2012;7(5):e36412 - PubMed
  39. Arch Biochem Biophys. 2012 Oct 15;526(2):194-205 - PubMed
  40. Nat Immunol. 2005 Nov;6(11):1142-51 - PubMed
  41. Cancer Res. 1998 Apr 1;58(7):1469-77 - PubMed
  42. Nat Immunol. 2005 Nov;6(11):1152-9 - PubMed
  43. Nat Commun. 2016 Sep 21;7:12878 - PubMed
  44. Nat Rev Immunol. 2006 Aug;6(8):595-601 - PubMed
  45. Science. 2005 Nov 18;310(5751):1159-63 - PubMed
  46. Q J Nucl Med Mol Imaging. 2015 Mar;59(1):18-38 - PubMed
  47. Blood. 2009 Mar 5;113(10):2275-83 - PubMed
  48. Pharmacol Ther. 1998 Dec;80(3):277-92 - PubMed
  49. J Biol Chem. 1996 Mar 1;271(9):4699-708 - PubMed
  50. Expert Opin Biol Ther. 2006 Dec;6(12):1323-31 - PubMed
  51. Hum Pathol. 1996 Feb;27(2):172-7 - PubMed
  52. Br J Cancer. 2009 Nov 17;101(10):1758-68 - PubMed
  53. Trends Immunol. 2015 Dec;36(12 ):763-77 - PubMed
  54. Cancer Cell. 2015 Apr 13;27(4):489-501 - PubMed
  55. Nature. 2012 Mar 25;484(7395):529-33 - PubMed
  56. Cancer Res. 2013 May 15;73(10):3075-86 - PubMed
  57. Drugs Today (Barc). 2000 May;36(5):321-36 - PubMed
  58. Clin Cancer Res. 2016 Feb 1;22(3):680-90 - PubMed
  59. Oncoimmunology. 2016 Jun 24;5(8):e1203498 - PubMed
  60. Sci Transl Med. 2016 Nov 30;8(367 ):367ra166 - PubMed
  61. J Clin Oncol. 2015 Jan 1;33(1):74-82 - PubMed
  62. Clin Cancer Res. 2010 Dec 15;16(24):6111-21 - PubMed

Publication Types