Display options
Share it on

Nat Commun. 2017 Apr 06;8:14921. doi: 10.1038/ncomms14921.

Bio-inspired Murray materials for mass transfer and activity.

Nature communications

Xianfeng Zheng, Guofang Shen, Chao Wang, Yu Li, Darren Dunphy, Tawfique Hasan, C Jeffrey Brinker, Bao-Lian Su

Affiliations

  1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Loushi Road 122, Wuhan 430070, China.
  2. NSF/UNM Center for Micro-Engineered Materials, Department of Chemical and Nuclear Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, USA.
  3. Cambridge Graphene Centre, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK.
  4. Advanced Materials Lab, Sandia National Laboratories, 1001 University Boulevard SE, Albuquerque, New Mexico 87106, USA.
  5. Laboratory of Inorganic Materials Chemistry, Department of Chemistry, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium.
  6. Clare Hall, University of Cambridge, Herschel Road, Cambridge CB3 9AL, UK.

PMID: 28382972 PMCID: PMC5384213 DOI: 10.1038/ncomms14921

Abstract

Both plants and animals possess analogous tissues containing hierarchical networks of pores, with pore size ratios that have evolved to maximize mass transport and rates of reactions. The underlying physical principles of this optimized hierarchical design are embodied in Murray's law. However, we are yet to realize the benefit of mimicking nature's Murray networks in synthetic materials due to the challenges in fabricating vascularized structures. Here we emulate optimum natural systems following Murray's law using a bottom-up approach. Such bio-inspired materials, whose pore sizes decrease across multiple scales and finally terminate in size-invariant units like plant stems, leaf veins and vascular and respiratory systems provide hierarchical branching and precise diameter ratios for connecting multi-scale pores from macro to micro levels. Our Murray material mimics enable highly enhanced mass exchange and transfer in liquid-solid, gas-solid and electrochemical reactions and exhibit enhanced performance in photocatalysis, gas sensing and as Li-ion battery electrodes.

References

  1. Nano Lett. 2012 Oct 10;12(10):5122-30 - PubMed
  2. Nat Nanotechnol. 2010 Jan;5(1):15-25 - PubMed
  3. J Am Chem Soc. 2008 Sep 17;130(37):12527-35 - PubMed
  4. Nat Mater. 2007 Jun;6(6):418-23 - PubMed
  5. J Am Chem Soc. 2013 May 22;135(20):7394-7 - PubMed
  6. Nature. 2003 Feb 27;421(6926):939-42 - PubMed
  7. Nat Mater. 2010 Apr;9(4):353-8 - PubMed
  8. Nat Mater. 2008 Jul;7(7):527-38 - PubMed
  9. Acc Chem Res. 2013 Jul 16;46(7):1397-406 - PubMed
  10. Proc Natl Acad Sci U S A. 1926 Mar;12(3):207-14 - PubMed
  11. Science. 2011 Feb 11;331(6018):746-50 - PubMed
  12. Angew Chem Int Ed Engl. 2008;47(49):9504-8 - PubMed
  13. J Am Chem Soc. 2011 Apr 20;133(15):5660-3 - PubMed
  14. Science. 1997 Apr 4;276(5309):122-6 - PubMed
  15. Science. 1999 Jun 4;284(5420):1677-9 - PubMed
  16. Nat Mater. 2005 Apr;4(4):277-88 - PubMed
  17. J Am Chem Soc. 2010 May 5;132(17):6131-44 - PubMed
  18. Nature. 2005 Feb 3;433(7025):516-9 - PubMed
  19. J Colloid Interface Sci. 2006 Jul 1;299(1):305-20 - PubMed
  20. Science. 2005 Jul 8;309(5732):275-8 - PubMed
  21. J Gen Physiol. 1981 Oct;78(4):431-53 - PubMed
  22. ACS Nano. 2011 Jan 25;5(1):590-6 - PubMed
  23. ACS Appl Mater Interfaces. 2012 Feb;4(2):817-25 - PubMed
  24. Nat Mater. 2013 Dec;12(12):1130-6 - PubMed
  25. Nature. 2003 Nov 20;426(6964):271-4 - PubMed
  26. Acc Chem Res. 2008 Feb;41(2):244-53 - PubMed

Publication Types