Display options
Share it on

Bot Stud. 2013 Dec;54(1):12. doi: 10.1186/1999-3110-54-12. Epub 2013 Aug 21.

Ectopic expression of OsMADS45 activates the upstream genes Hd3a and RFT1 at an early development stage causing early flowering in rice.

Botanical studies

Jiun-Da Wang, Shuen-Fang Lo, Yan-Suan Li, Po-Ju Chen, Shih-Yun Lin, Teh-Yuan Ho, Jenq-Horng Lin, Liang-Jwu Chen

Affiliations

  1. Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.
  2. Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan.
  3. Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan.
  4. Institute of Plant and Microbiology, Academia Sinica, Taipei 115, Taiwan.
  5. Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan. [email protected].
  6. Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan. [email protected].
  7. Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan. [email protected].

PMID: 28510861 PMCID: PMC5432754 DOI: 10.1186/1999-3110-54-12

Abstract

BACKGROUND: The rice gene, OsMADS45, which belongs to the MADS-box E class gene, participates in the regulation of floral development. Previous studies have revealed that ectopic expression of OsMADS45 induces early flowering and influences reduced plant height under short-day (SD) conditions. However, the regulation mechanism of OsMADS45 overexpression remains unknown. We introduce an OsMADS45 overexpression construct Ubi:OsMADS45 into TNG67 plants (an Hd1 (Heading date 1) and Ehd1 (Early heading date 1) defective rice cultivar grown in Taiwan), and we analyzed the expression patterns of various floral regulators to understand the regulation pathways affected by OsMADS45 expression.

RESULTS: The transgenic rice exhibit a heading date approximately 40 days earlier than that observed in TNG67 plants, and transgenic rice display small plant size and low grain yield. OsMADS45 overexpression did not alter the oscillating rhythm of the examined floral regulatory genes but advanced (by approximately 20 days) the up-regulate of two florigens, Hd3a (Heading Date 3a) and RFT1 (RICE FLOWERING LOCUS T1) and suppressed the expression of Hd1 at the juvenile stage. The expression levels of OsMADS14 and OsMADS18, which are two well-known reproductive phase transition markers, were also increased at early developmental stages and are believed to be the major regulators responsible for early flowering in OsMADS45-overexpressing transgenic rice. OsMADS45 overexpression did not influence other floral regulator genes upstream of Hd1 and Ehd1, such as OsGI (OsGIGANTEA), Ehd2/Osld1/RID1 and OsMADS50.

CONCLUSION: These results indicate that in transgenic rice, OsMADS45 overexpressing ectopically activates the upstream genes Hd3a and RFT1 at early development stage and up-regulates the expression of OsMADS14 and OsMADS18, which induces early flowering.

Keywords: Floral regulatory genes; Hd1; Hd3a; OsMADS45; RFT1; Rice

References

  1. Plant Cell. 2011 Jun;23(6):2143-54 - PubMed
  2. Planta. 2008 Jul;228(2):355-65 - PubMed
  3. Plant J. 2004 Jun;38(5):754-64 - PubMed
  4. Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:345-370 - PubMed
  5. Plant Mol Biol. 1999 May;40(1):167-77 - PubMed
  6. Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):12915-20 - PubMed
  7. Genes Dev. 2004 Apr 15;18(8):926-36 - PubMed
  8. Plant Physiol. 1999 Aug;120(4):1193-204 - PubMed
  9. Transgenic Res. 2008 Dec;17(6):1035-43 - PubMed
  10. Mol Gen Genet. 1997 Feb 20;253(5):615-23 - PubMed
  11. J Biol Chem. 2002 Jul 19;277(29):26429-35 - PubMed
  12. Plant Mol Biol. 2012 Nov;80(4-5):429-42 - PubMed
  13. Nat Genet. 2008 Jun;40(6):761-7 - PubMed
  14. Plant Physiol. 2004 Jun;135(2):677-84 - PubMed
  15. Nature. 2011 Jul 31;476(7360):332-5 - PubMed
  16. Ann Bot. 2009 Jun;103(8):1165-72 - PubMed
  17. J Biol Chem. 2002 Apr 19;277(16):13641-9 - PubMed
  18. Annu Rev Plant Biol. 2004;55:197-223 - PubMed
  19. PLoS Genet. 2013;9(2):e1003281 - PubMed
  20. Biochem Biophys Res Commun. 2010 Oct 29;401(4):598-604 - PubMed
  21. ScientificWorldJournal. 2006 Jul 06;6:1923-32 - PubMed
  22. BMC Genomics. 2007 Jul 18;8:242 - PubMed
  23. Science. 2007 May 18;316(5827):1033-6 - PubMed
  24. Plant J. 2008 Dec;56(6):1018-29 - PubMed
  25. Plant Physiol. 2004 Aug;135(4):2207-19 - PubMed
  26. Plant Cell. 2012 May;24(5):1848-59 - PubMed
  27. Genes Genet Syst. 2007 Apr;82(2):167-70 - PubMed
  28. Nature. 2003 Apr 17;422(6933):719-22 - PubMed
  29. Genes Genet Syst. 2011;86(3):175-82 - PubMed
  30. J Exp Bot. 2007;58(12):3091-7 - PubMed
  31. Mol Plant. 2011 Mar;4(2):319-30 - PubMed
  32. Development. 2009 Oct;136(20):3443-50 - PubMed
  33. Plant Physiol. 2008 Nov;148(3):1425-35 - PubMed
  34. Plant J. 2010 Mar;61(5):767-81 - PubMed
  35. Plant Cell Physiol. 2011 Jun;52(6):1083-94 - PubMed
  36. Development. 2008 Feb;135(4):767-74 - PubMed
  37. Nature. 2000 May 11;405(6783):200-3 - PubMed
  38. Plant Cell Physiol. 2002 Oct;43(10):1096-105 - PubMed
  39. Plant Mol Biol. 2000 Nov;44(4):513-27 - PubMed
  40. Plant Physiol. 2000 Jan;122(1):57-66 - PubMed
  41. Nature. 2001 Jan 25;409(6819):525-9 - PubMed
  42. Plant Cell. 2000 Jun;12(6):871-84 - PubMed
  43. Plant J. 2007 Nov;52(4):690-9 - PubMed
  44. Philos Trans R Soc Lond B Biol Sci. 2010 Oct 12;365(1555):3129-47 - PubMed
  45. Dev Genet. 1999 Sep;25(3):237-44 - PubMed
  46. Plant Physiol. 2007 Dec;145(4):1484-94 - PubMed
  47. Plant Cell Physiol. 2013 Mar;54(3):385-97 - PubMed
  48. Mol Genet Genomics. 2002 Oct;268(2):152-9 - PubMed
  49. Nucleic Acids Res. 2011 Jan;39(Database issue):D1141-8 - PubMed
  50. Plant Cell Environ. 2009 Oct;32(10):1412-27 - PubMed
  51. Plant Mol Biol. 1997 Sep;35(1-2):25-34 - PubMed
  52. Sex Plant Reprod. 2011 Dec;24(4):247-82 - PubMed
  53. Plant Cell Physiol. 2003 Aug;44(8):783-94 - PubMed
  54. Plant J. 2010 Jun 1;62(5):807-16 - PubMed

Publication Types