Display options
Share it on

Chem Sci. 2017 Feb 01;8(2):928-937. doi: 10.1039/c6sc04524c. Epub 2016 Dec 14.

NMR-filtered virtual screening leads to non-metal chelating metallo-β-lactamase inhibitors.

Chemical science

Guo-Bo Li, Martine I Abboud, Jürgen Brem, Hidenori Someya, Christopher T Lohans, Sheng-Yong Yang, James Spencer, David W Wareham, Michael A McDonough, Christopher J Schofield

Affiliations

  1. Department of Chemistry , University of Oxford , 12 Mansfield Road , Oxford , OX1 3TA , UK . Email: [email protected] ; Email: [email protected].
  2. Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education , West China School of Pharmacy , Sichuan University , Chengdu , 610041 , China.
  3. Medicinal Chemistry Research Laboratories , New Drug Research Division , Otsuka Pharmaceutical Co., Ltd. , 463-10 Kagasuno, Kawauchi-cho , Tokushima 771-0192 , Japan.
  4. State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy , West China Hospital , West China Medical School , Sichuan University , Sichuan 610041 , China.
  5. School of Cellular and Molecular Medicine , Biomedical Sciences Building , University of Bristol , Bristol BS8 1TD , UK.
  6. Antimicrobial Research Group , Barts & The London School of Medicine and Dentistry , Queen Mary University of London , London , E1 2AT , UK.

PMID: 28451231 PMCID: PMC5369532 DOI: 10.1039/c6sc04524c

Abstract

There are no clinically useful inhibitors of metallo-β-lactamases (MBLs), which are a growing problem because they hydrolyse almost all β-lactam antibacterials. Inhibition by most reported MBL inhibitors involves zinc ion chelation. A structure-based virtual screening approach combined with NMR filtering led to the identification of inhibitors of the clinically relevant Verona Integron-encoded MBL (VIM)-2. Crystallographic analyses reveal a new mode of MBL inhibition involving binding adjacent to the active site zinc ions, but which does not involve metal chelation. The results will aid efforts to develop new types of clinically useful inhibitors targeting MBLs/MBL-fold metallo-enzymes involved in antibacterial and anticancer drug resistance.

References

  1. Biochemistry. 2014 Nov 25;53(46):7321-31 - PubMed
  2. Eur J Med Chem. 2015 Mar 26;93:523-38 - PubMed
  3. Trends Biochem Sci. 2016 Apr;41(4):338-55 - PubMed
  4. Angew Chem Int Ed Engl. 2012 Jul 2;51(27):6672-5 - PubMed
  5. J Med Chem. 2012 Mar 8;55(5):2173-84 - PubMed
  6. Antimicrob Agents Chemother. 2000 Apr;44(4):891-7 - PubMed
  7. J Med Chem. 2015 Nov 12;58(21):8671-82 - PubMed
  8. Antimicrob Agents Chemother. 2001 Mar;45(3):660-3 - PubMed
  9. Nat Commun. 2016 Aug 08;7:12406 - PubMed
  10. J Chem Inf Model. 2013 Mar 25;53(3):592-600 - PubMed
  11. Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):E3745-54 - PubMed
  12. Nat Chem. 2014 Dec;6(12):1084-90 - PubMed
  13. Antimicrob Agents Chemother. 2010 Mar;54(3):969-76 - PubMed
  14. Ann N Y Acad Sci. 2013 Jan;1277:91-104 - PubMed
  15. Antibiotics (Basel). 2014 Jul 1;3(3):285-316 - PubMed
  16. Ann Pharmacother. 2015 Jan;49(1):86-98 - PubMed
  17. Int J Antimicrob Agents. 2009 Mar;33(3):287 - PubMed
  18. J Med Chem. 2008 Feb 14;51(3):684-8 - PubMed
  19. Nature. 2014 Jun 26;510(7506):503-6 - PubMed
  20. Future Med Chem. 2016 Jun;8(10):1063-84 - PubMed
  21. J Am Chem Soc. 2014 Oct 22;136(42):14694-7 - PubMed
  22. Bioinorg Chem Appl. 2008;:576297 - PubMed
  23. Drugs. 2010 Apr 16;70(6):651-79 - PubMed
  24. Acc Chem Res. 2006 Oct;39(10):721-8 - PubMed
  25. Chem Commun (Camb). 2016 May 10;52(40):6727-30 - PubMed
  26. J Med Chem. 2013 Sep 12;56(17):6945-53 - PubMed
  27. Antimicrob Agents Chemother. 2015 Oct 19;60(1):142-50 - PubMed
  28. Clin Microbiol Rev. 2010 Jan;23(1):160-201 - PubMed
  29. Antimicrob Agents Chemother. 2016 Sep 23;60(10):5655-62 - PubMed
  30. Biochemistry. 2006 Sep 5;45(35):10654-66 - PubMed
  31. Chem Commun (Camb). 2012 Jan 21;48(6):811-3 - PubMed
  32. Antimicrob Agents Chemother. 2015 Dec 14;60(3):1377-84 - PubMed

Publication Types

Grant support