Display options
Share it on

Kidney Int Rep. 2016 Nov;1(4):256-268. doi: 10.1016/j.ekir.2016.08.007. Epub 2016 Aug 18.

Lipidomic Signature of Progression of Chronic Kidney Disease in the Chronic Renal Insufficiency Cohort.

Kidney international reports

Farsad Afshinnia, Thekkelnaycke M Rajendiran, Alla Karnovsky, Tanu Soni, Xue Wang, Dawei Xie, Wei Yang, Tariq Shafi, Matthew R Weir, Jiang He, Carolyn S Brecklin, Eugene P Rhee, Jeffrey R Schelling, Akinlolu Ojo, Harold Feldman, George Michailidis, Subramaniam Pennathur

Affiliations

  1. Division of Nephrology Department of Internal Medicine, University of Michigan.
  2. Department of Pathology, University of Michigan.
  3. Michigan Regional Comprehensive Metabolomics Resource Core.
  4. Department of Computational Medicine & Bioinformatics, University of Michigan.
  5. Department of Biostatistics and Epidemiology, University of Pennsylvania.
  6. Johns Hopkins University School of Medicine.
  7. Division of Nephrology, Department of Medicine, University of Maryland School of Medicine.
  8. Tulane University School of Medicine.
  9. University of Illinois at Chicago.
  10. Massachusetts General Hospital.
  11. Case Western Reserve University, MetroHealth Medical Center.
  12. Department of Statistics, University of Michigan.

PMID: 28451650 PMCID: PMC5402253 DOI: 10.1016/j.ekir.2016.08.007

Abstract

INTRODUCTION: Human studies report conflicting results on the predictive power of serum lipids on progression of chronic kidney disease (CKD). We aimed to systematically identify the lipids that predict progression to end-stage kidney disease.

METHODS: From the Chronic Renal Insufficiency Cohort, 79 patients with CKD stage 2 to 3 who progressed to ESKD over 6 years of follow up were selected and frequency-matched by age, sex, race, and diabetes with 121 non-progressors with less than 25% decline in estimated glomerular filtration rate (eGFR) during the follow up. The patients were randomly divided into Training and Test sets. We applied liquid chromatography-mass spectrometry-based lipidomics on visit year 1 samples.

RESULTS: We identified 510 lipids, of which the top 10 coincided with false discovery threshold of 0.058 in the Training set. From the top 10 lipids, the abundance of diacylglycerols (DAGs) and cholesteryl esters was lower, but that of phosphatidic acid 44:4 and monoacylglycerol (MAG) 16:0 was significantly higher in progressors. Using logistic regression models a multi-marker panel consisting of DAGs, and MAG independently predicted progression. The c-statistic of the multimarker panel added to the base model consisting of eGFR and urine protein-creatinine ratio (UPCR) as compared to that of the base model was 0.92 (95% Confidence Interval [CI]: 0.88-0.97), and 0.83 (95% CI: 0.76-0.90, P<0.01), respectively; an observation which was validated in the Test subset.

CONCLUSION: We conclude that a distinct panel of lipids may improve prediction of progression of CKD beyond eGFR and UPCR when added to the base model.

Keywords: Chronic Kidney Disease; Lipids; proteinuria

References

  1. Diabetes Care. 2013 Jun;36(6):1462-9 - PubMed
  2. Am J Clin Nutr. 2009 Jun;89(6):1937-45 - PubMed
  3. Radiology. 1983 Sep;148(3):839-43 - PubMed
  4. Clin J Am Soc Nephrol. 2009 Aug;4(8):1302-11 - PubMed
  5. J Biol Chem. 2012 Apr 6;287(15):11761-8 - PubMed
  6. Biochim Biophys Acta. 1998 Jan 23;1389(3):197-205 - PubMed
  7. Bioinformatics. 2012 Feb 1;28(3):373-80 - PubMed
  8. J Mol Neurosci. 2015 May;56(1):78-88 - PubMed
  9. Stat Med. 1997 Jul 15;16(13):1529-42 - PubMed
  10. Clin J Am Soc Nephrol. 2014 Jul;9(7):1190-8 - PubMed
  11. Diabetes Metab. 2004 Feb;30(1):43-51 - PubMed
  12. Ann Intern Med. 2009 May 5;150(9):604-12 - PubMed
  13. Clin J Am Soc Nephrol. 2010 Sep;5(9):1582-7 - PubMed
  14. Diabetes. 2015 Mar;64(3):718-32 - PubMed
  15. J Comput Aided Mol Des. 2002 Oct;16(10):711-26 - PubMed
  16. J Lipid Res. 2009 Apr;50 Suppl:S9-14 - PubMed
  17. Arch Biochem Biophys. 1994 Oct;314(1):217-23 - PubMed
  18. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W127-33 - PubMed
  19. Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5 - PubMed
  20. J Am Soc Nephrol. 2003 Jul;14(7 Suppl 2):S148-53 - PubMed
  21. Circulation. 2011 May 24;123(20):2292-333 - PubMed
  22. Biochem J. 1997 Jul 1;325 ( Pt 1):223-8 - PubMed
  23. Cell Signal. 2006 Apr;18(4):401-8 - PubMed
  24. Biochem Biophys Res Commun. 1996 Dec 4;229(1):158-62 - PubMed
  25. Arch Biochem Biophys. 1997 Nov 1;347(1):37-44 - PubMed
  26. Ann Intern Med. 2004 Dec 21;141(12):929-37 - PubMed
  27. Circ Cardiovasc Genet. 2014 Dec;7(6):941-54 - PubMed
  28. Clin J Am Soc Nephrol. 2008 Jan;3(1):125-32 - PubMed
  29. J Clin Invest. 2011 Apr;121(4):1402-11 - PubMed
  30. Biochemistry. 1992 Feb 4;31(4):1125-34 - PubMed
  31. Biometrics. 1988 Sep;44(3):837-45 - PubMed
  32. J Biol Chem. 1988 May 5;263(13):6322-8 - PubMed
  33. J Ren Nutr. 2009 Jan;19(1):73-7 - PubMed
  34. Biochim Biophys Acta. 1998 Feb 5;1390(1):103-17 - PubMed
  35. Behav Brain Res. 2001 Nov 1;125(1-2):279-84 - PubMed
  36. J Chem Inf Comput Sci. 2003 Nov-Dec;43(6):1947-58 - PubMed
  37. Chem Rev. 2011 Oct 12;111(10):6452-90 - PubMed
  38. Nephrol Dial Transplant. 1997 Sep;12(9):1908-15 - PubMed
  39. Eur J Biochem. 1992 Oct 1;209(1):467-73 - PubMed
  40. Eur Surg Res. 2009;42(1):40-8 - PubMed
  41. Anal Bioanal Chem. 2004 Oct;380(3):419-29 - PubMed
  42. Biochem J. 1997 May 1;323 ( Pt 3):693-9 - PubMed
  43. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W652-60 - PubMed
  44. Anal Chem. 2009 Oct 1;81(19):7974-80 - PubMed
  45. Biochim Biophys Acta. 1992 Dec 15;1175(1):88-94 - PubMed
  46. Mol Cell Biol. 2002 Jun;22(11):3783-93 - PubMed
  47. Oncogene. 2004 Jun 17;23(28):4828-38 - PubMed
  48. PLoS One. 2012;7(11):e48889 - PubMed
  49. J Lipid Res. 2015 Feb;56(2):413-22 - PubMed
  50. Diabetes. 2012 May;61(5):1004-16 - PubMed

Publication Types

Grant support