Display options
Share it on

JCI Insight. 2017 May 18;2(10). doi: 10.1172/jci.insight.91701. eCollection 2017 May 18.

Ceramide synthesis regulates T cell activity and GVHD development.

JCI insight

M Hanief Sofi, Jessica Heinrichs, Mohammed Dany, Hung Nguyen, Min Dai, David Bastian, Steven Schutt, Yongxia Wu, Anusara Daenthanasanmak, Salih Gencer, Aleksandra Zivkovic, Zdzislaw Szulc, Holger Stark, Chen Liu, Ying-Jun Chang, Besim Ogretmen, Xue-Zhong Yu

Affiliations

  1. Department of Microbiology and Immunology and.
  2. Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA.
  3. Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany.
  4. Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA.
  5. Peking University People's Hospital and Institute of Hematology, Beijing, China.

PMID: 28515365 PMCID: PMC5436544 DOI: 10.1172/jci.insight.91701

Abstract

Allogeneic hematopoietic cell transplantation (allo-HCT) is an effective immunotherapy for a variety of hematologic malignances, yet its efficacy is impeded by the development of graft-versus-host disease (GVHD). GVHD is characterized by activation, expansion, cytokine production, and migration of alloreactive donor T cells. Hence, strategies to limit GVHD are highly desirable. Ceramides are known to contribute to inflammation and autoimmunity. However, their involvement in T-cell responses to alloantigens is undefined. In the current study, we specifically characterized the role of ceramide synthase 6 (CerS6) after allo-HCT using genetic and pharmacologic approaches. We found that CerS6 was required for optimal T cell activation, proliferation, and cytokine production in response to alloantigen and for subsequent induction of GVHD. However, CerS6 was partially dispensable for the T cell-mediated antileukemia effect. At the molecular level, CerS6 was required for efficient TCR signal transduction, including tyrosine phosphorylation, ZAP-70 activation, and PKCθ/TCR colocalization. Impaired generation of C16-ceramide was responsible for diminished allogeneic T cell responses. Furthermore, targeting CerS6 using a specific inhibitor significantly reduced T cell activation in mouse and human T cells in vitro. Our study provides a rationale for targeting CerS6 to control GVHD, which would enhance the efficacy of allo-HCT as an immunotherapy for hematologic malignancies in the clinic.

Keywords: Immunology; Transplantation

References

  1. J Immunol. 2012 Jun 1;188(11):5723-33 - PubMed
  2. J Cell Biol. 1999 Oct 18;147(2):447-61 - PubMed
  3. J Immunol. 2015 May 1;194(9):4061-5 - PubMed
  4. Mediators Inflamm. 2015;2015:120748 - PubMed
  5. Nat Rev Immunol. 2007 May;7(5):340-52 - PubMed
  6. Curr Mol Med. 2010 Jul;10(5):454-66 - PubMed
  7. Immunobiology. 2012 Jun;217(6):601-9 - PubMed
  8. FEBS Lett. 2010 Dec 15;584(24):4865-71 - PubMed
  9. Curr Opin Immunol. 2010 Jun;22(3):286-92 - PubMed
  10. J Immunol. 2000 Sep 15;165(6):3065-72 - PubMed
  11. J Biol Chem. 2015 May 22;290(21):13157-67 - PubMed
  12. J Biol Chem. 2010 Apr 2;285(14):10911-23 - PubMed
  13. Science. 1999 Jul 9;285(5425):221-7 - PubMed
  14. Open Respir Med J. 2010 Mar 30;4:39-47 - PubMed
  15. Br J Pharmacol. 2009 Oct;158(4):982-93 - PubMed
  16. J Biol Chem. 2013 Jul 19;288(29):21433-47 - PubMed
  17. Nat Med. 2008 Apr;14(4):382-91 - PubMed
  18. J Exp Med. 2000 Jul 17;192(2):295-302 - PubMed
  19. Semin Hematol. 2006 Jan;43(1):3-10 - PubMed
  20. Prog Lipid Res. 2012 Jan;51(1):50-62 - PubMed
  21. Immunol Cell Biol. 2015 Oct;93(9):767-8 - PubMed
  22. Pharmacol Res. 2007 Jun;55(6):537-44 - PubMed
  23. Int J Oncol. 2008 Mar;32(3):537-44 - PubMed
  24. Adv Exp Med Biol. 2010;688:46-59 - PubMed
  25. Proc Natl Acad Sci U S A. 2016 May 24;113(21):5928-33 - PubMed
  26. Nat Rev Cancer. 2004 Aug;4(8):604-16 - PubMed
  27. Blood. 2013 Oct 3;122(14):2500-11 - PubMed
  28. Blood. 2009 Nov 12;114(20):4327-36 - PubMed
  29. Blood. 2014 Jul 17;124(3):374-84 - PubMed
  30. Blood. 2009 Oct 22;114(17):3693-706 - PubMed
  31. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3394-9 - PubMed
  32. Nature. 1997 Jan 2;385(6611):83-6 - PubMed
  33. J Invest Dermatol. 2015 Jun;135(6):1501-9 - PubMed
  34. Org Lett. 2006 Nov 23;8(24):5569-72 - PubMed
  35. Lancet. 2009 May 2;373(9674):1550-61 - PubMed
  36. J Immunol. 2006 Feb 15;176(4):2397-406 - PubMed
  37. Biochimie. 2012 Feb;94(2):558-65 - PubMed
  38. Blood. 2008 Jan 15;111(2):954-62 - PubMed
  39. Bioorg Med Chem. 2006 Nov 1;14(21):7083-104 - PubMed
  40. Biol Blood Marrow Transplant. 2012 Oct;18(10):1488-99 - PubMed
  41. Nat Immunol. 2001 Jun;2(6):556-63 - PubMed
  42. Annu Rev Immunol. 2007;25:139-70 - PubMed
  43. Neuromolecular Med. 2010 Dec;12(4):341-50 - PubMed
  44. Science. 2008 Oct 3;322(5898):110-5 - PubMed
  45. Blood. 2005 Jun 1;105(11):4191-9 - PubMed
  46. Hum Mol Genet. 2012 Feb 1;21(3):586-608 - PubMed
  47. Trends Immunol. 2002 Nov;23(11):526-9 - PubMed
  48. Int Immunol. 1993 Nov;5(11):1461-71 - PubMed
  49. J Clin Invest. 2003 Jul;112(1):101-8 - PubMed
  50. J Clin Invest. 2016 Apr 1;126(4):1337-52 - PubMed
  51. Biochem J. 2014 Jul 1;461(1):147-58 - PubMed

Publication Types

Grant support