Display options
Share it on

ACS Nano. 2017 Jun 27;11(6):6355-6361. doi: 10.1021/acsnano.7b02726. Epub 2017 May 26.

Highly Oriented Atomically Thin Ambipolar MoSe.

ACS nano

Ming-Wei Chen, Dmitry Ovchinnikov, Sorin Lazar, Michele Pizzochero, Michael Brian Whitwick, Alessandro Surrente, Michał Baranowski, Oriol Lopez Sanchez, Philippe Gillet, Paulina Plochocka, Oleg V Yazyev, Andras Kis

Affiliations

  1. Electrical Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland.
  2. Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland.
  3. FEI Electron Optics , 5600 KA Eindhoven, The Netherlands.
  4. Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland.
  5. Laboratoire National des Champs Magnétiques Intenses CNRS-UGA-UPS-INSA, 143 avenue de Rangueil, 31400 Toulouse, France.
  6. Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroc?aw University of Science and Technology , Wybrzeze Wyspianskiego 27, 50-370 Wroc?aw, Poland.

PMID: 28530829 PMCID: PMC5492213 DOI: 10.1021/acsnano.7b02726

Abstract

Transition metal dichalcogenides (TMDCs), together with other two-dimensional (2D) materials, have attracted great interest due to the unique optical and electrical properties of atomically thin layers. In order to fulfill their potential, developing large-area growth and understanding the properties of TMDCs have become crucial. Here, we have used molecular beam epitaxy (MBE) to grow atomically thin MoSe

Keywords: MoSe2; ambipolar electrical transport; epitaxial growth; transmission electron microscopy; two-dimensional materials; two-dimensional semiconductors

References

  1. Nanoscale. 2015 May 7;7(17):7896-905 - PubMed
  2. Phys Rev Lett. 2014 Aug 8;113(6):066105 - PubMed
  3. Science. 2015 Jul 31;349(6247):524-8 - PubMed
  4. Nat Mater. 2013 Aug;12(8):754-9 - PubMed
  5. Nat Commun. 2015 Mar 12;6:6437 - PubMed
  6. ACS Nano. 2015 Mar 24;9(3):3274-83 - PubMed
  7. Nano Lett. 2013 Jul 10;13(7):3023-8 - PubMed
  8. Nano Lett. 2010 Apr 14;10(4):1271-5 - PubMed
  9. Nature. 2010 Mar 25;464(7288):571-4 - PubMed
  10. Nat Mater. 2013 Jun;12(6):554-61 - PubMed
  11. Nat Mater. 2014 Dec;13(12):1091-5 - PubMed
  12. Sci Rep. 2015 Oct 19;5:15313 - PubMed
  13. Nat Nanotechnol. 2011 Mar;6(3):147-50 - PubMed
  14. Nat Nanotechnol. 2012 Nov;7(11):699-712 - PubMed
  15. Phys Rev Lett. 2010 Sep 24;105(13):136805 - PubMed
  16. Nat Commun. 2014 Sep 18;5:4966 - PubMed
  17. Nat Nanotechnol. 2014 Feb;9(2):111-5 - PubMed
  18. ACS Nano. 2015 Apr 28;9(4):4611-20 - PubMed
  19. ACS Appl Mater Interfaces. 2016 Mar 23;8(11):7396-402 - PubMed
  20. Nat Commun. 2016 Aug 08;7:12391 - PubMed
  21. Nature. 2013 Jul 25;499(7459):419-25 - PubMed
  22. Nano Lett. 2015 Apr 8;15(4):2594-9 - PubMed
  23. ACS Nano. 2014 May 27;8(5):5125-31 - PubMed
  24. Nat Commun. 2014 Sep 11;5:4836 - PubMed
  25. Nano Lett. 2012 Aug 8;12(8):4013-7 - PubMed
  26. Nano Lett. 2012 Mar 14;12(3):1538-44 - PubMed
  27. ACS Nano. 2014 Jul 22;8(7):7180-5 - PubMed
  28. Adv Mater. 2012 Aug 22;24(32):4392-7 - PubMed

Publication Types