Display options
Share it on

Front Microbiol. 2017 May 24;8:937. doi: 10.3389/fmicb.2017.00937. eCollection 2017.

The Structural and Functional Capacity of Ruminal and Cecal Microbiota in Growing Cattle Was Unaffected by Dietary Supplementation of Linseed Oil and Nitrate.

Frontiers in microbiology

Milka Popova, Emily McGovern, Matthew S McCabe, Cécile Martin, Michel Doreau, Marie Arbre, Sarah J Meale, Diego P Morgavi, Sinéad M Waters

Affiliations

  1. UMR1213 Herbivores, Institut National de la Recherche Agronomique, VetAgro Sup, Clermont Université, Université de LyonSaint Genès-Champanelle, France.
  2. Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, TeagascDunsany, County Meath, Ireland.

PMID: 28596764 PMCID: PMC5442214 DOI: 10.3389/fmicb.2017.00937

Abstract

Microorganisms in the digestive tract of ruminants differ in their functionality and ability to use feed constituents. While cecal microbiota play an important role in post-rumen fermentation of residual substrates undigested in the rumen, limited knowledge exists regarding its structure and function. In this trial we investigated the effect of dietary supplementation with linseed oil and nitrate on methane emissions and on the structure of ruminal and cecal microbiota of growing bulls. Animals were allocated to either a CTL (control) or LINNIT (CTL supplemented with 1.9% linseed and 1.0% nitrates) diet. Methane emissions were measured using the GreenFeed system. Microbial diversity was assessed using amplicon sequencing of microbial genomic DNA. Additionally, total RNA was extracted from ruminal contents and functional

Keywords: cecum; linseed; methane; microbiota; nitrate; rumen; ruminants

References

  1. PLoS One. 2015 Oct 28;10(10):e0140282 - PubMed
  2. PeerJ. 2014 Aug 05;2:e494 - PubMed
  3. Gut Microbes. 2014;5(5):628-38 - PubMed
  4. J Microbiol Methods. 2014 Aug;103:3-5 - PubMed
  5. Microbiology. 2002 Nov;148(Pt 11):3521-30 - PubMed
  6. J Dairy Sci. 2016 May;99(5):3445-56 - PubMed
  7. Res Microbiol. 2001 Apr-May;152(3-4):205-10 - PubMed
  8. ISME J. 2016 Oct;10 (10 ):2459-67 - PubMed
  9. Front Microbiol. 2016 Mar 04;7:228 - PubMed
  10. J Anim Sci. 2015 Nov;93(11):5367-77 - PubMed
  11. BMC Genomics. 2015 Oct 23;16:839 - PubMed
  12. J Anim Sci. 2015 Jul;93(7):3564-77 - PubMed
  13. J Dairy Sci. 2010 Jul;93(7):3203-15 - PubMed
  14. Sci Rep. 2015 Oct 09;5:14567 - PubMed
  15. Animal. 2010 Jul;4(7):1024-36 - PubMed
  16. Nat Protoc. 2008;3(6):1101-8 - PubMed
  17. Folia Microbiol (Praha). 2010 Jul;55(4):368-72 - PubMed
  18. J Dairy Sci. 2012 Aug;95(8):4578-90 - PubMed
  19. Biometrics. 2006 Mar;62(1):245-53 - PubMed
  20. Appl Environ Microbiol. 2013 Sep;79(17):5112-20 - PubMed
  21. Sci Rep. 2016 Dec 12;6:38781 - PubMed
  22. Appl Environ Microbiol. 2008 Jun;74(12):3619-25 - PubMed
  23. Genome Res. 2014 Sep;24(9):1517-25 - PubMed
  24. J Dairy Sci. 2010 Dec;93(12):5856-66 - PubMed
  25. Antonie Van Leeuwenhoek. 2007 May;91(4):303-14 - PubMed
  26. Microb Biotechnol. 2014 Sep;7(5):467-79 - PubMed
  27. Nat Biotechnol. 2013 Sep;31(9):814-21 - PubMed
  28. Nat Commun. 2013;4:1428 - PubMed
  29. Appl Environ Microbiol. 2015 Feb;81(3):986-95 - PubMed
  30. Anim Sci J. 2015 Apr;86(4):378-84 - PubMed
  31. J Dairy Sci. 1989 Feb;72(2):485-92 - PubMed
  32. Front Microbiol. 2015 Jul 30;6:776 - PubMed
  33. Sci Rep. 2015 Nov 03;5:16116 - PubMed
  34. Animal. 2008 May;2(5):653-60 - PubMed
  35. J Appl Microbiol. 2009 Nov;107(5):1642-50 - PubMed
  36. Asian-Australas J Anim Sci. 2015 Oct;28(10):1433-41 - PubMed
  37. Bioresour Technol. 2012 Jan;103(1):173-9 - PubMed
  38. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 - PubMed
  39. Appl Environ Microbiol. 2012 Dec;78(23):8245-53 - PubMed
  40. Br J Nutr. 1976 Jul;36(1):1-14 - PubMed
  41. Animal. 2016 Jul;10 (7):1173-81 - PubMed
  42. J Anim Sci. 2015 Apr;93(4):1815-23 - PubMed
  43. Nature. 1960 Nov 19;188:670-1 - PubMed
  44. Appl Environ Microbiol. 2013 Mar;79(6):1777-86 - PubMed

Publication Types