Display options
Share it on

JCI Insight. 2017 Jun 02;2(11). doi: 10.1172/jci.insight.93487. eCollection 2017 Jun 02.

Optimized multiplex immunofluorescence single-cell analysis reveals tuft cell heterogeneity.

JCI insight

Eliot T McKinley, Yunxia Sui, Yousef Al-Kofahi, Bryan A Millis, Matthew J Tyska, Joseph T Roland, Alberto Santamaria-Pang, Christina L Ohland, Christian Jobin, Jeffrey L Franklin, Ken S Lau, Michael J Gerdes, Robert J Coffey

Affiliations

  1. Epithelial Biology Center and.
  2. Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
  3. General Electric Global Research Center, Niskayuna, New York, USA.
  4. Department of Cell and Developmental Biology.
  5. Cell Imaging Shared Resource, and.
  6. Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
  7. Department of Medicine.
  8. Department of Infectious Diseases and Pathology, and.
  9. Department of Anatomy and Cell Physiology, University of Florida, Gainesville, Florida, USA.
  10. Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee, USA.

PMID: 28570279 PMCID: PMC5453701 DOI: 10.1172/jci.insight.93487

Abstract

Intestinal tuft cells are a rare, poorly understood cell type recently shown to be a critical mediator of type 2 immune response to helminth infection. Here, we present advances in segmentation algorithms and analytical tools for multiplex immunofluorescence (MxIF), a platform that enables iterative staining of over 60 antibodies on a single tissue section. These refinements have enabled a comprehensive analysis of tuft cell number, distribution, and protein expression profiles as a function of anatomical location and physiological perturbations. Based solely on DCLK1 immunoreactivity, tuft cell numbers were similar throughout the mouse small intestine and colon. However, multiple subsets of tuft cells were uncovered when protein coexpression signatures were examined, including two new intestinal tuft cell markers, Hopx and EGFR phosphotyrosine 1068. Furthermore, we identified dynamic changes in tuft cell number, composition, and protein expression associated with fasting and refeeding and after introduction of microbiota to germ-free mice. These studies provide a foundational framework for future studies of intestinal tuft cell regulation and demonstrate the utility of our improved MxIF computational methods and workflow for understanding cellular heterogeneity in complex tissues in normal and disease states.

Keywords: Gastroenterology

References

  1. Stem Cell Res. 2014 Nov;13(3 Pt A):422-30 - PubMed
  2. Nat Med. 2014 Apr;20(4):436-42 - PubMed
  3. Science. 2016 Mar 18;351(6279):1329-33 - PubMed
  4. Diabetes. 2003 Oct;52(10 ):2570-7 - PubMed
  5. J Nutr. 2001 Jan;131(1):105-10 - PubMed
  6. Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11982-7 - PubMed
  7. Mol Syst Biol. 2015 Oct 30;11(10):835 - PubMed
  8. J Clin Invest. 2011 Jun;121(6):2242-53 - PubMed
  9. Immune Netw. 2013 Apr;13(2):43-54 - PubMed
  10. Gastroenterology. 2015 Aug;149(2):407-19.e8 - PubMed
  11. EMBO J. 2012 Jun 12;31(14):3079-91 - PubMed
  12. Dev Biol. 2012 Feb 15;362(2):194-218 - PubMed
  13. Sci Rep. 2016 Nov 23;6:37667 - PubMed
  14. Nat Biotechnol. 2006 Oct;24(10):1270-8 - PubMed
  15. Mucosal Immunol. 2016 Nov;9(6):1353-1359 - PubMed
  16. J Anat. 2007 Jul;211(1):125-31 - PubMed
  17. Nature. 2011 Sep 18;478(7368):255-9 - PubMed
  18. Cell Mol Life Sci. 2012 Sep;69(17):2907-17 - PubMed
  19. Cell Stem Cell. 2017 Feb 2;20(2):177-190.e4 - PubMed
  20. J Clin Invest. 2014 May;124(5):2172-87 - PubMed
  21. J Clin Invest. 2014 Mar;124(3):1283-95 - PubMed
  22. Cell Death Differ. 2011 Sep;18(9):1470-7 - PubMed
  23. Methods. 2014 Nov;70(1):46-58 - PubMed
  24. Anat Sci Int. 2007 Dec;82(4):187-99 - PubMed
  25. BMC Bioinformatics. 2015;16 Suppl 11:S10 - PubMed
  26. Nat Cell Biol. 2011 Nov 27;14 (1):106-14 - PubMed
  27. Gastroenterology. 2014 Jan;146(1):233-44.e5 - PubMed
  28. J Cell Biol. 2011 Mar 7;192(5):767-80 - PubMed
  29. Science. 2011 Dec 9;334(6061):1420-4 - PubMed
  30. Stem Cell Reports. 2014 Nov 11;3(5):876-91 - PubMed
  31. Sci Signal. 2016 Oct 11;9(449):rs11 - PubMed
  32. PLoS One. 2015 Aug 18;10(8):e0134212 - PubMed
  33. Cytometry A. 2015 Oct;87(10):936-42 - PubMed
  34. Med Phys. 2010 Jan;37(1):339-51 - PubMed
  35. Am J Pathol. 2015 Aug;185(8):2219-31 - PubMed
  36. Cell Rep. 2015 Dec 22;13(11):2403-11 - PubMed
  37. Nat Methods. 2014 Jan;11(1):25-7 - PubMed
  38. Science. 2015 Apr 24;348(6233):aaa6090 - PubMed
  39. Stem Cells. 2014 Mar;32(3):822-7 - PubMed
  40. Nature. 2016 Jan 14;529(7585):226-30 - PubMed
  41. Int J Exp Pathol. 2011 Aug;92(4):219-31 - PubMed
  42. Nat Methods. 2014 Apr;11(4):417-22 - PubMed
  43. Cell Tissue Kinet. 1977 Jan;10(1):3-14 - PubMed
  44. JCI Insight. 2016 May 5;1(6):null - PubMed
  45. Nature. 2016 Jan 14;529(7585):221-5 - PubMed
  46. J Natl Cancer Inst. 2005 Dec 21;97(24):1808-15 - PubMed
  47. Gene Expr Patterns. 2006 Aug;6(6):581-8 - PubMed
  48. ISME J. 2013 Nov;7(11):2116-25 - PubMed
  49. Stem Cells. 2008 Mar;26(3):630-7 - PubMed

Publication Types

Grant support