Display options
Share it on

Nat Commun. 2017 Jun 05;8:15569. doi: 10.1038/ncomms15569.

Control of morphology and formation of highly geometrically confined magnetic skyrmions.

Nature communications

Chiming Jin, Zi-An Li, András Kovács, Jan Caron, Fengshan Zheng, Filipp N Rybakov, Nikolai S Kiselev, Haifeng Du, Stefan Blügel, Mingliang Tian, Yuheng Zhang, Michael Farle, Rafal E Dunin-Borkowski

Affiliations

  1. The Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Science (CAS), Hefei, Anhui Province 230031, China.
  2. Department of Physics, University of Science and Technology of China, Hefei, Anhui Province 230031, China.
  3. Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, Jülich 52425, Germany.
  4. Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Duisburg 48047, Germany.
  5. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
  6. M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Ekaterinburg 620990, Russia.
  7. Ural Federal University, Ekaterinburg 620002, Russia.
  8. KTH Royal Institute of Technology, Stockholm SE-10691, Sweden.
  9. Peter Grünberg Institute and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, Jülich 52425, Germany.
  10. Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Jiangsu Province 210093, China.
  11. Center of Functionalized Magnetic Materials, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russian Federation.

PMID: 28580935 PMCID: PMC5465359 DOI: 10.1038/ncomms15569

Abstract

The ability to controllably manipulate magnetic skyrmions, small magnetic whirls with particle-like properties, in nanostructured elements is a prerequisite for incorporating them into spintronic devices. Here, we use state-of-the-art electron holographic imaging to directly visualize the morphology and nucleation of magnetic skyrmions in a wedge-shaped FeGe nanostripe that has a width in the range of 45-150 nm. We find that geometrically-confined skyrmions are able to adopt a wide range of sizes and ellipticities in a nanostripe that are absent in both thin films and bulk materials and can be created from a helical magnetic state with a distorted edge twist in a simple and efficient manner. We perform a theoretical analysis based on a three-dimensional general model of isotropic chiral magnets to confirm our experimental results. The flexibility and ease of formation of geometrically confined magnetic skyrmions may help to optimize the design of skyrmion-based memory devices.

References

  1. Nat Mater. 2011 Feb;10(2):106-9 - PubMed
  2. Sci Rep. 2015 Nov 25;5:17137 - PubMed
  3. Phys Rev Lett. 2017 Feb 24;118(8):087202 - PubMed
  4. Science. 2008 Apr 11;320(5873):190-4 - PubMed
  5. Nat Nanotechnol. 2013 Oct;8(10):742-7 - PubMed
  6. Nat Nanotechnol. 2013 Dec;8(12):899-911 - PubMed
  7. Nat Mater. 2012 Apr 23;11(5):372-81 - PubMed
  8. Nat Commun. 2015 Oct 08;6:8504 - PubMed
  9. Nat Mater. 2009 Apr;8(4):271-80 - PubMed
  10. Science. 2009 Feb 13;323(5916):915-9 - PubMed
  11. Phys Rev Lett. 2015 Sep 11;115(11):117201 - PubMed
  12. Nat Commun. 2014 Oct 17;5:5148 - PubMed
  13. Phys Rev Lett. 2015 May 1;114(17):177203 - PubMed
  14. Nano Lett. 2015 Feb 11;15(2):1309-14 - PubMed
  15. Science. 2015 Jul 17;349(6245):283-6 - PubMed
  16. Science. 2013 May 31;340(6136):1076-80 - PubMed
  17. Science. 2013 Aug 9;341(6146):636-9 - PubMed
  18. Nat Nanotechnol. 2013 Mar;8(3):152-6 - PubMed
  19. Nat Nanotechnol. 2013 Nov;8(11):839-44 - PubMed
  20. Sci Adv. 2016 Feb 12;2(2):e1501280 - PubMed
  21. Nat Commun. 2015 Jul 06;6:7637 - PubMed
  22. Nat Nanotechnol. 2015 Jul;10(7):589-92 - PubMed
  23. Nat Nanotechnol. 2013 Oct;8(10):723-8 - PubMed
  24. Science. 2010 Dec 17;330(6011):1648-51 - PubMed
  25. Phys Rev Lett. 2016 Aug 19;117(8):087202 - PubMed
  26. Nature. 2010 Jun 17;465(7300):901-4 - PubMed
  27. Nat Nanotechnol. 2014 May;9(5):337-42 - PubMed
  28. Proc Natl Acad Sci U S A. 2016 May 3;113(18):4918-23 - PubMed
  29. Phys Rev Lett. 2012 Jan 6;108(1):017601 - PubMed

Publication Types