Display options
Share it on

EJNMMI Res. 2017 Dec;7(1):47. doi: 10.1186/s13550-017-0291-2. Epub 2017 May 25.

Quantitative analysis of dynamic .

EJNMMI research

Christopher Coello, Marie Fisk, Divya Mohan, Frederick J Wilson, Andrew P Brown, Michael I Polkey, Ian Wilkinson, Ruth Tal-Singer, Philip S Murphy, Joseph Cheriyan, Roger N Gunn

Affiliations

  1. Imanova Ltd., Centre for Imaging Sciences, Hammersmith Hospital, London, UK. [email protected].
  2. Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK. [email protected].
  3. Experimental Medicine and Immunotherapeutics (EMIT) Division, Department of Medicine, University of Cambridge, Cambridge, UK.
  4. NIHR Respiratory Biomedical Research Unit at the Royal Brompton and Harefield NHS Foundation Trust and Imperial College, London, UK.
  5. GSK R&D, King of Prussia, PA, USA.
  6. GSK R&D, Stevenage, UK.
  7. Imanova Ltd., Centre for Imaging Sciences, Hammersmith Hospital, London, UK.
  8. Cambridge Clinical Trials Unit, Addenbrooke's Hospital, Cambridge, UK.
  9. GSK R&D, Cambridge, UK.
  10. Cambridge University Hospitals NHS Foundation Trust, University of Cambridge, Cambridge, UK.
  11. Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK.
  12. Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK.

PMID: 28547129 PMCID: PMC5445063 DOI: 10.1186/s13550-017-0291-2

Abstract

BACKGROUND: An inflammatory reaction in the airways and lung parenchyma, comprised mainly of neutrophils and alveolar macrophages, is present in some patients with chronic obstructive pulmonary disease (COPD). Thoracic fluorodeoxyglucose (

RESULTS: The qABL method detected no difference (Hedge's g = 0.15 [-0.76 1.04]) in the tissue metabolic rate of FDG in the whole lung between HV (μ = 6.0 ± 1.9 × 10

CONCLUSIONS: We have introduced a quantitative analysis method that provides a direct estimate of the metabolic rate of FDG in lung tissue. This work provides further understanding of the underlying origin of the

Keywords: 18F-FDG; COPD; Lung inflammation; Modelling; PET

References

  1. J Cereb Blood Flow Metab. 2001 Jun;21(6):635-52 - PubMed
  2. Ann Neurol. 1979 Nov;6(5):371-88 - PubMed
  3. J Nucl Med. 2002 May;43(5):652-7 - PubMed
  4. Chest. 2002 May;121(5 Suppl):160S-165S - PubMed
  5. Eur Respir J. 2003 Apr;21(4):567-73 - PubMed
  6. Lancet. 2007 Sep 1;370(9589):741-50 - PubMed
  7. Lancet. 2007 Sep 1;370(9589):765-73 - PubMed
  8. Acad Radiol. 2008 Jun;15(6):763-75 - PubMed
  9. Am J Respir Crit Care Med. 2009 Sep 15;180(6):533-9 - PubMed
  10. Eur J Nucl Med Mol Imaging. 2011 Dec;38(12):2238-46 - PubMed
  11. Eur J Neurosci. 2011 Dec;34(12):1887-94 - PubMed
  12. Am J Respir Crit Care Med. 2012 Dec 1;186(11):1125-32 - PubMed
  13. PLoS One. 2012;7(10):e47588 - PubMed
  14. Am J Respir Crit Care Med. 2012 Dec 1;186(11):1071-3 - PubMed
  15. Eur J Nucl Med Mol Imaging. 2014 Feb;41(2):337-42 - PubMed
  16. Phys Med Biol. 2015 Sep 21;60(18):7387-402 - PubMed
  17. Am J Respir Crit Care Med. 2016 Mar 15;193(6):607-13 - PubMed
  18. J Nucl Med. 2017 Feb;58(2):201-207 - PubMed
  19. Phys Med Biol. 2017 Dec 14;63(1):015007 - PubMed
  20. J Cereb Blood Flow Metab. 1985 Dec;5(4):584-90 - PubMed
  21. Eur Respir J. 1995 Jun;8(6):1001-17 - PubMed
  22. J Neurochem. 1977 May;28(5):897-916 - PubMed
  23. Eur Respir J. 1997 Apr;10(4):795-803 - PubMed

Publication Types

Grant support