Display options
Share it on

Biomed Opt Express. 2017 Mar 09;8(4):2124-2137. doi: 10.1364/BOE.8.002124. eCollection 2017 Apr 01.

High-dynamic-range fluorescence laminar optical tomography (HDR-FLOT).

Biomedical optics express

Qinggong Tang, Yi Liu, Vassiliy Tsytsarev, Jonathan Lin, Bohan Wang, Udayakumar Kanniyappan, Zhifang Li, Yu Chen

Affiliations

  1. Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA.
  2. Contributed equally.
  3. Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201 USA.
  4. Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350007, China.

PMID: 28736659 PMCID: PMC5516817 DOI: 10.1364/BOE.8.002124

Abstract

Three-dimensional fluorescence laminar optical tomography (FLOT) can achieve resolutions of 100-200 µm and penetration depths of 2-3 mm. FLOT has been used in tissue engineering, neuroscience, as well as oncology. The limited dynamic range of the charge-coupled device-based system makes it difficult to image fluorescent samples with a large concentration difference, limits its penetration depth, and diminishes the quantitative accuracy of 3D reconstruction data. Here, incorporating the high-dynamic-range (HDR) method widely used in digital cameras, we present HDR-FLOT, increasing penetration depth and improving the ability to image fluorescent samples with a large concentration difference. The method was tested using an agar phantom and a B6 mouse for brain imaging

Keywords: (170.2520) Fluorescence microscopy; (170.3010) Image reconstruction techniques; (170.3880) Medical and biological imaging; (170.6960) Tomography

References

  1. Rev Sci Instrum. 2009 Apr;80(4):043706 - PubMed
  2. Opt Express. 2010 Apr 12;18(8):8422-9 - PubMed
  3. Science. 2004 Aug 13;305(5686):1007-9 - PubMed
  4. Opt Lett. 2009 Jun 1;34(11):1615-7 - PubMed
  5. Ann Biomed Eng. 2016 Mar;44(3):667-79 - PubMed
  6. J Neurosci Neuroeng. 2012 Dec;1(2):180-192 - PubMed
  7. Biomaterials. 2012 Jul;33(21):5325-32 - PubMed
  8. Sci Rep. 2015 Nov 27;5:17325 - PubMed
  9. Quant Imaging Med Surg. 2015 Feb;5(1):118-24 - PubMed
  10. Opt Express. 2005 Jun 27;13(13):4828-42 - PubMed
  11. Appl Opt. 1995 May 1;34(13):2362-6 - PubMed
  12. Opt Lett. 2008 May 1;33(9):1032-4 - PubMed
  13. Opt Express. 2016 Aug 22;24(17):19920-33 - PubMed
  14. Opt Express. 2010 May 10;18(10):10068-77 - PubMed
  15. Phys Med Biol. 2010 Jan 7;55(1):191-206 - PubMed
  16. Nat Commun. 2016 Apr 01;7:11077 - PubMed
  17. Biomed Opt Express. 2016 Nov 21;7(12 ):5218-5232 - PubMed
  18. Med Phys. 2003 Jun;30(6):1039-47 - PubMed
  19. Opt Lett. 2001 May 15;26(10):701-3 - PubMed
  20. Neuroimage. 2007 Mar;35(1):89-104 - PubMed
  21. Opt Express. 2007 Dec 24;15(26):17827-41 - PubMed
  22. Neuroimage. 2010 Oct 15;53(1):233-8 - PubMed
  23. Acad Radiol. 2014 Feb;21(2):271-80 - PubMed
  24. Opt Express. 2012 Apr 9;20(8):8824-36 - PubMed
  25. Neurophotonics. 2017 Jan;4(1):011009 - PubMed
  26. Opt Express. 2011 Dec 19;19(27):26283-94 - PubMed
  27. Biomed Opt Express. 2012 Jul 1;3(7):1701-12 - PubMed
  28. Sci Rep. 2016 Apr 29;6:25269 - PubMed
  29. Opt Lett. 2000 Dec 15;25(24):1777-9 - PubMed
  30. Biomed Opt Express. 2010 Sep 02;1(3):780-790 - PubMed
  31. J Biomed Opt. 2013 Oct;18(10):100501 - PubMed
  32. J Biomed Opt. 2011 Apr;16(4):046005 - PubMed
  33. J Biophotonics. 2011 Nov;4(11-12):773-87 - PubMed
  34. Opt Lett. 2004 Jul 15;29(14):1650-2 - PubMed

Publication Types