Display options
Share it on

Front Hum Neurosci. 2017 Sep 07;11:436. doi: 10.3389/fnhum.2017.00436. eCollection 2017.

Movement-Related Activity of Human Subthalamic Neurons during a Reach-to-Grasp Task.

Frontiers in human neuroscience

Monika Pötter-Nerger, Rene Reese, Frank Steigerwald, Jan Arne Heiden, Jan Herzog, Christian K E Moll, Wolfgang Hamel, Uri Ramirez-Pasos, Daniela Falk, Maximilian Mehdorn, Christian Gerloff, Günther Deuschl, Jens Volkmann

Affiliations

  1. Department of Neurology, Christian-Albrechts-UniversityKiel, Germany.
  2. Department of Neurology, University Hamburg-EppendorfHamburg, Germany.
  3. Department of Neurology, University RostockRostock, Germany.
  4. Department of Neurology, Julius-Maximilian UniversityWürzburg, Germany.
  5. Department of Neurophysiology, University Hamburg-EppendorfHamburg, Germany.
  6. Department of Neurosurgery, University Hamburg-EppendorfHamburg, Germany.
  7. Department of Neurosurgery, Christian-Albrechts-UniversityKiel, Germany.

PMID: 28936169 PMCID: PMC5594073 DOI: 10.3389/fnhum.2017.00436

Abstract

The aim of the study was to record movement-related single unit activity (SUA) in the human subthalamic nucleus (STN) during a standardized motor task of the upper limb. We performed microrecordings from the motor region of the human STN and registered kinematic data in 12 patients with Parkinson's disease (PD) undergoing deep brain stimulation surgery (seven women, mean age 62.0 ± 4.7 years) while they intraoperatively performed visually cued reach-to-grasp movements using a grip device. SUA was analyzed offline in relation to different aspects of the movement (attention, start of the movement, movement velocity, button press) in terms of firing frequency, firing pattern, and oscillation. During the reach-to-grasp movement, 75/114 isolated subthalamic neurons exhibited movement-related activity changes. The largest proportion of single units showed modulation of firing frequency during several phases of the reach and grasp (polymodal neurons, 45/114), particularly an increase of firing rate during the reaching phase of the movement, which often correlated with movement velocity. The firing pattern (bursting, irregular, or tonic) remained unchanged during movement compared to rest. Oscillatory single unit firing activity (predominantly in the theta and beta frequency) decreased with movement onset, irrespective of oscillation frequency. This study shows for the first time specific, task-related, SUA changes during the reach-to-grasp movement in humans.

Keywords: Parkinson’s disease; beta oscillation; deep brain stimulation; neurophysiology; reach-to-grasp movement; subthalamic nucleus

References

  1. Eur J Neurosci. 2015 Feb;41(4):454-65 - PubMed
  2. J Neurosci. 2007 May 30;27(22):6029-36 - PubMed
  3. J Neurophysiol. 1994 Aug;72(2):521-30 - PubMed
  4. J Neurosci. 2001 Feb 1;21(3):1033-8 - PubMed
  5. Neurology. 2003 Dec 9;61(11):1538-45 - PubMed
  6. J Neurosci. 2012 Jun 20;32(25):8620-32 - PubMed
  7. Brain Res. 2009 Mar 13;1260:15-23 - PubMed
  8. Science. 2015 May 22;348(6237):860-1 - PubMed
  9. Stereotact Funct Neurosurg. 2004;82(5-6):222-9 - PubMed
  10. Exp Brain Res. 2000 Oct;134(3):353-62 - PubMed
  11. Mov Disord. 2003 Jul;18(7):791-8 - PubMed
  12. PLoS One. 2015 Nov 10;10(11):e0142679 - PubMed
  13. J Neurophysiol. 1990 Jul;64(1):164-78 - PubMed
  14. Eur J Neurosci. 2005 Jan;21(1):249-58 - PubMed
  15. Curr Opin Neurobiol. 2015 Aug;33:16-24 - PubMed
  16. Brain. 2002 Jun;125(Pt 6):1196-209 - PubMed
  17. J Neurosci. 2010 Aug 4;30(31):10306-23 - PubMed
  18. Science. 2015 May 22;348(6237):906-10 - PubMed
  19. J Neurophysiol. 2008 Nov;100(5):2515-24 - PubMed
  20. J Neurosci. 1983 Aug;3(8):1586-98 - PubMed
  21. Brain Res. 1995 Oct 2;694(1-2):111-27 - PubMed
  22. J Neurosci. 2015 Nov 18;35(46):15466-76 - PubMed
  23. Brain Res Brain Res Rev. 2005 Feb;48(1):112-28 - PubMed
  24. J Neurosci. 2015 Apr 22;35(16):6472-80 - PubMed
  25. Exp Brain Res. 2002 Jan;142(1):151-7 - PubMed
  26. Exp Neurol. 2012 Aug;236(2):319-26 - PubMed
  27. Eur J Neurosci. 2000 Jul;12(7):2597-607 - PubMed
  28. Brain. 2001 Sep;124(Pt 9):1777-90 - PubMed
  29. Neurosci Lett. 2005 Oct 7;386(3):156-9 - PubMed
  30. Parkinsonism Relat Disord. 2013 Jan;19(1):32-6 - PubMed
  31. J Neurophysiol. 1999 Nov;82(5):2049-60 - PubMed
  32. Neuroscience. 1996 May;72(1):105-15 - PubMed
  33. J Comput Neurosci. 1995 Dec;2(4):313-34 - PubMed
  34. Exp Neurol. 2005 Jul;194(1):212-20 - PubMed
  35. J Neurophysiol. 2006 Jan;95(1):144-58 - PubMed
  36. J Neurosci. 2004 Dec 15;24(50):11302-6 - PubMed
  37. J Neurophysiol. 1994 Aug;72(2):494-506 - PubMed
  38. Brain. 2004 Apr;127(Pt 4):735-46 - PubMed
  39. Exp Brain Res. 2000 Jan;130(2):195-215 - PubMed
  40. Eur J Neurosci. 2005 Mar;21(5):1403-12 - PubMed
  41. J Neurosurg. 2002 Nov;97(5):1167-72 - PubMed
  42. Ann Neurol. 1998 Oct;44(4):622-8 - PubMed
  43. Hum Neurobiol. 1984;2(4):235-44 - PubMed
  44. J Mot Behav. 1984 Sep;16(3):235-54 - PubMed
  45. J Neurosci. 2015 Aug 12;35(32):11415-32 - PubMed
  46. Ciba Found Symp. 1984;107:64-82 - PubMed
  47. Brain. 2008 Dec;131(Pt 12):3395-409 - PubMed
  48. J Neurosci. 2010 Jan 6;30(1):342-9 - PubMed
  49. J Neurophysiol. 1994 Aug;72(2):507-20 - PubMed
  50. J Neurophysiol. 2006 Dec;96(6):3248-56 - PubMed
  51. Trends Neurosci. 1990 Jul;13(7):266-71 - PubMed
  52. Brain. 2006 Mar;129(Pt 3):695-706 - PubMed
  53. J Neurophysiol. 1996 Sep;76(3):2083-8 - PubMed
  54. J Neurophysiol. 1999 Oct;82(4):1832-42 - PubMed
  55. Exp Brain Res. 1996 Mar;108(2):206-20 - PubMed
  56. Neurol Sci. 2002 Sep;23 Suppl 2:S101-2 - PubMed

Publication Types