Display options
Share it on

Biomicrofluidics. 2017 Sep 19;11(5):054104. doi: 10.1063/1.4986533. eCollection 2017 Sep.

Multimodal microfluidic platform for controlled culture and analysis of unicellular organisms.

Biomicrofluidics

Tao Geng, Chuck R Smallwood, Erin L Bredeweg, Kyle R Pomraning, Andrew E Plymale, Scott E Baker, James E Evans, Ryan T Kelly

Affiliations

  1. Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland, Washington 99354, USA.
  2. Energy Processes and Materials Division, Pacific Northwest National Laboratory Richland, Washington 99354, USA.
  3. Biological Sciences Division, Pacific Northwest National Laboratory Richland, Washington 99354, USA.

PMID: 28966700 PMCID: PMC5608609 DOI: 10.1063/1.4986533

Abstract

Modern live-cell imaging approaches permit real-time visualization of biological processes, yet limitations exist for unicellular organism isolation, culturing, and long-term imaging that preclude fully understanding how cells sense and respond to environmental perturbations and the link between single-cell variability and whole-population dynamics. Here, we present a microfluidic platform that provides fine control over the local environment with the capacity to replace media components at any experimental time point, and provides both perfused and compartmentalized cultivation conditions depending on the valve configuration. The functionality and flexibility of the platform were validated using both bacteria and yeast having different sizes, motility, and growth media. The demonstrated ability to track the growth and dynamics of both motile and non-motile prokaryotic and eukaryotic organisms emphasizes the versatility of the devices, which should enable studies in bioenergy and environmental research.

References

  1. Nat Rev Genet. 2009 Sep;10(9):628-38 - PubMed
  2. Nat Methods. 2005 Sep;2(9):685-9 - PubMed
  3. Small. 2006 Oct;2(10):1212-20 - PubMed
  4. Environ Microbiol. 2008 Jul;10(7):1861-76 - PubMed
  5. Angew Chem Int Ed Engl. 2009;48(32):5908-11 - PubMed
  6. Nature. 2013 Nov 28;503(7477):481-486 - PubMed
  7. Nat Methods. 2011 May 22;8(7):581-6 - PubMed
  8. Microbiology. 2014 Apr;160(Pt 4):807-17 - PubMed
  9. Anal Chem. 2013 Jun 18;85(12):5892-9 - PubMed
  10. Annu Rev Microbiol. 2007;61:237-58 - PubMed
  11. Nature. 2014 Mar 13;507(7491):181-9 - PubMed
  12. Anal Chem. 2014 Oct 21;86(20):10138-47 - PubMed
  13. Neuron. 2010 Apr 15;66(1):57-68 - PubMed
  14. Anal Chem. 2014 Jan 7;86(1):703-12 - PubMed
  15. Electrophoresis. 2016 Feb;37(3):455-62 - PubMed
  16. Plant J. 2013 Mar;73(6):1057-68 - PubMed
  17. Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11293-8 - PubMed
  18. Nature. 2010 Jun 10;465(7299):736-45 - PubMed
  19. Lab Chip. 2013 Mar 7;13(5):947-54 - PubMed
  20. Science. 2000 Apr 7;288(5463):113-6 - PubMed
  21. Biotechnol Bioeng. 2016 Aug;113(8):1691-701 - PubMed
  22. Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18149-54 - PubMed
  23. Lab Chip. 2009 Sep 21;9(18):2659-64 - PubMed
  24. Science. 2005 Jul 1;309(5731):137-40 - PubMed
  25. Biotechnol Adv. 2015 Dec;33(8):1522-46 - PubMed
  26. Plant Cell. 2011 Dec;23(12):4234-40 - PubMed
  27. Sci Rep. 2015 Nov 04;5:16111 - PubMed
  28. J Mol Microbiol Biotechnol. 2000 Apr;2(2):207-16 - PubMed
  29. Proc Natl Acad Sci U S A. 2016 May 10;113(19):5299-304 - PubMed
  30. Proc Natl Acad Sci U S A. 2012 Aug 28;109 (35):14271-6 - PubMed
  31. Biomaterials. 2015 Aug;61:239-45 - PubMed
  32. Nat Biotechnol. 2014 May;32(5):473-8 - PubMed
  33. Lab Chip. 2015;15(18):3687-94 - PubMed
  34. Sci Rep. 2014 Oct 10;4:6576 - PubMed
  35. Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):4916-20 - PubMed
  36. Lab Chip. 2012 Apr 21;12(8):1487-94 - PubMed
  37. Biotechnol Biofuels. 2017 Jan 3;10 :2 - PubMed
  38. Lab Chip. 2016 Mar 21;16(6):1039-46 - PubMed
  39. Methods Mol Biol. 2014;1205:1-12 - PubMed

Publication Types