Display options
Share it on

Oncogenesis. 2017 Oct 02;6(10):e384. doi: 10.1038/oncsis.2017.84.

Combination curcumin and (-)-epigallocatechin-3-gallate inhibits colorectal carcinoma microenvironment-induced angiogenesis by JAK/STAT3/IL-8 pathway.

Oncogenesis

G Jin, Y Yang, K Liu, J Zhao, X Chen, H Liu, R Bai, X Li, Y Jiang, X Zhang, J Lu, Z Dong

Affiliations

  1. Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
  2. Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, China.
  3. Laboratory of Bone Tumor, Henan Luoyang Orthopedic Hospital, Zhengzhou, Henan, China.
  4. Department of Pathology, Henan Cancer Hospital, Zhengzhou University, Zhengzhou, Henan, China.

PMID: 28967875 PMCID: PMC5668882 DOI: 10.1038/oncsis.2017.84

Abstract

Tumor microenvironment has a crucial role in cancer development and progression, whereas the mechanism of how it regulates angiogenesis is unclear. In this study, we simulated the colorectal carcinoma microenvironment by conditioned medium (CM) of colorectal carcinoma cell lines (SW620, HT-29, HCT116) supernatant or colorectal carcinoma tissue homogenate supernatant to induce normal endothelial cells (NECs). We found that colorectal carcinoma CM promoted tumor angiogenesis by coercing NECs toward tumor endothelial cells (TECs) with the activation of the JAK/STAT3 signaling pathway. Antibody array analysis showed HT-29 supernatant contained numerous angiogenesis-related proteins, especially IL-8. Interestingly, the production of IL-8 in NECs induced by HT-29 CM was also increased. We also verified the crucial role of IL-8 in promoting the CM-induced angiogenesis, as IL-8 repression by neutralizing antibody abolished the transition of NECs toward TECs. Curcumin and (-)-epigallocatechin-3-gallate (EGCG) are broadly investigated in cancer chemoprevention. However, poor bioavailability hurdles their application alone, and the mechanism of their anti-angiogenesis still need to be illuminated. Here, we found that curcumin combination with EGCG attenuated the tumor CM-induced transition of NECs toward TECs by inhibiting JAK/STAT3 signaling pathway. Furthermore, the combination of curcumin and EGCG markedly reduced tumor growth and angiogenesis in the colorectal carcinoma PDX mouse model, and the combined anti-angiogenic effect was better than that of curcumin or EGCG alone. Taken together, our findings provide a new mechanism of tumor angiogenesis, and the combination of curcumin and EGCG represents a potential anti-angiogenic therapeutic method for colorectal carcinoma.

References

  1. Adv Drug Deliv Rev. 2016 Apr 1;99(Pt B):140-147 - PubMed
  2. Vasc Cell. 2013 May 02;5(1):9 - PubMed
  3. Adv Drug Deliv Rev. 2017 Apr;113:24-48 - PubMed
  4. Cell Mol Life Sci. 2010 Jun;67(12):2091-106 - PubMed
  5. Cytokine Growth Factor Rev. 2001 Dec;12(4):375-91 - PubMed
  6. J Biol Chem. 2013 Feb 1;288(5):2986-93 - PubMed
  7. Anticancer Drugs. 2017 Feb;28(2):153-160 - PubMed
  8. FASEB J. 2011 Sep;25(9):2874-82 - PubMed
  9. JAKSTAT. 2013 Apr 1;2(2):e23828 - PubMed
  10. Science. 2000 Aug 18;289(5482):1197-202 - PubMed
  11. Oncotarget. 2015 Dec 29;6(42):44274-88 - PubMed
  12. Cytokine Growth Factor Rev. 2016 Apr;28:21-9 - PubMed
  13. PLoS One. 2012;7(2):e31067 - PubMed
  14. World J Gastroenterol. 2016 Aug 21;22(31):7058-68 - PubMed
  15. Clin Cancer Res. 2008 Nov 1;14(21):6735-41 - PubMed
  16. Semin Cancer Biol. 2015 Dec;35 Suppl:S199-S223 - PubMed
  17. Cancer Sci. 2014 May;105(5):560-7 - PubMed
  18. Oncol Lett. 2015 Dec;10(6):3471-3477 - PubMed
  19. Clin Cancer Res. 2003 Dec 1;9(16 Pt 1):5996-6001 - PubMed
  20. PLoS One. 2016 Aug 09;11(8):e0160125 - PubMed
  21. Steroids. 2016 Nov;115:160-168 - PubMed
  22. Cancer Prev Res (Phila). 2010 Aug;3(8):953-62 - PubMed
  23. Arch Pharm Res. 2016 Aug;39(8):1085-99 - PubMed
  24. J Immunol. 2009 Sep 1;183(5):2895-7 - PubMed
  25. Clin Cancer Res. 2004 Nov 1;10(21):7157-62 - PubMed
  26. Oncol Rep. 2015 Dec;34(6):3311-7 - PubMed
  27. J Nutr Biochem. 2017 Apr;42:7-16 - PubMed
  28. Br J Cancer. 2013 Nov 26;109(11):2842-52 - PubMed
  29. Oncol Rep. 2016 Feb;35(2):785-92 - PubMed
  30. Am J Physiol Gastrointest Liver Physiol. 2015 Jul 15;309(2):G59-70 - PubMed
  31. Oncol Rep. 2016 Jul;36(1):155-64 - PubMed
  32. Nat Med. 2011 Nov 07;17(11):1359-70 - PubMed
  33. Hepatology. 2012 Mar;55(3):807-20 - PubMed
  34. Carcinogenesis. 2013 Dec;34(12):2778-88 - PubMed
  35. Oncotarget. 2015 Dec 29;6(42):44579-92 - PubMed
  36. Semin Oncol. 2002 Dec;29(6 Suppl 16):15-8 - PubMed
  37. Fitoterapia. 2011 Jan;82(1):34-7 - PubMed
  38. Semin Cancer Biol. 2015 Dec;35 Suppl:S224-S243 - PubMed
  39. Cancer Sci. 2011 Feb;102(2):317-23 - PubMed
  40. World J Gastroenterol. 2016 Jun 21;22(23 ):5317-31 - PubMed
  41. Oncotarget. 2015 Aug 14;6(23 ):19469-82 - PubMed
  42. J Clin Invest. 2014 Oct;124(10 ):4335-50 - PubMed
  43. Anticancer Res. 2015 Jan;35(1):39-46 - PubMed
  44. Phytomedicine. 2016 Nov 15;23 (12 ):1344-1355 - PubMed
  45. Cancer Sci. 2008 Mar;99(3):459-66 - PubMed
  46. ACS Chem Biol. 2016 Feb 19;11(2):308-18 - PubMed

Publication Types