Display options
Share it on

Sci Rep. 2017 Oct 03;7(1):12642. doi: 10.1038/s41598-017-12879-2.

Time-lapse imaging of microRNA activity reveals the kinetics of microRNA activation in single living cells.

Scientific reports

Hideaki Ando, Matsumi Hirose, Gen Kurosawa, Soren Impey, Katsuhiko Mikoshiba

Affiliations

  1. Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan. [email protected].
  2. Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan.
  3. Theoretical Biology Laboratory, RIKEN, Wako, Saitama, 351-0198, Japan.
  4. Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR, 97239, USA.

PMID: 28974737 PMCID: PMC5626736 DOI: 10.1038/s41598-017-12879-2

Abstract

MicroRNAs (miRNAs) are small, non-coding RNAs that play critical roles in the post-transcriptional regulation of gene expression. Although the molecular mechanisms of the biogenesis and activation of miRNA have been extensively studied, the details of their kinetics within individual living cells remain largely unknown. We developed a novel method for time-lapse imaging of the rapid dynamics of miRNA activity in living cells using destabilized fluorescent proteins (dsFPs). Real-time monitoring of dsFP-based miRNA sensors revealed the duration necessary for miRNA biogenesis to occur, from primary miRNA transcription to mature miRNA activation, at single-cell resolution. Mathematical modeling, which included the decay kinetics of the fluorescence of the miRNA sensors, demonstrated that miRNAs induce translational repression depending on their complementarity with targets. We also developed a dual-color imaging system, and demonstrated that miR-9-5p and miR-9-3p were produced and activated from a common hairpin precursor with similar kinetics, in single cells. Furthermore, a dsFP-based miR-132 sensor revealed the rapid kinetics of miR-132 activation in cortical neurons under physiological conditions. The timescale of miRNA biogenesis and activation is much shorter than the median half-lives of the proteome, suggesting that the degradation rates of miRNA target proteins are the dominant rate-limiting factors for miRNA-mediated gene silencing.

References

  1. Anal Biochem. 1994 Jun;219(2):169-81 - PubMed
  2. Nucleic Acids Res. 2013 Nov;41(20):e192 - PubMed
  3. EMBO J. 2004 Oct 13;23(20):4051-60 - PubMed
  4. Nucleic Acids Res. 2012 Jan;40(2):e13 - PubMed
  5. Science. 2001 Aug 3;293(5531):834-8 - PubMed
  6. Nat Rev Mol Cell Biol. 2009 Feb;10(2):116-25 - PubMed
  7. J Proteome Res. 2011 Dec 2;10(12):5275-84 - PubMed
  8. Genes Dev. 2001 Oct 15;15(20):2654-9 - PubMed
  9. Cell. 2013 Feb 14;152(4):844-58 - PubMed
  10. Nature. 2003 Sep 25;425(6956):415-9 - PubMed
  11. Sci Rep. 2017 May 8;7(1):1550 - PubMed
  12. J Nucl Med. 2008 Oct;49(10 ):1686-93 - PubMed
  13. Cell. 2001 Jul 13;106(1):23-34 - PubMed
  14. Front Cell Neurosci. 2013 Nov 20;7:220 - PubMed
  15. Mol Cell. 2007 Jul 6;27(1):91-105 - PubMed
  16. Science. 2004 Jan 2;303(5654):95-8 - PubMed
  17. J Biol Chem. 1998 Dec 25;273(52):34970-5 - PubMed
  18. Genes Dev. 2010 May 15;24(10):992-1009 - PubMed
  19. Nat Med. 2006 May;12(5):585-91 - PubMed
  20. RNA Biol. 2013 Jul;10(7):1125-35 - PubMed
  21. Science. 2005 May 6;308(5723):833-8 - PubMed
  22. Nat Biotechnol. 2004 Dec;22(12):1567-72 - PubMed
  23. RNA. 2004 Oct;10(10):1507-17 - PubMed
  24. Nat Rev Genet. 2011 Feb;12(2):99-110 - PubMed
  25. Biochim Biophys Acta. 2011 Nov-Dec;1809(11-12):700-7 - PubMed
  26. Nature. 2008 Sep 4;455(7209):58-63 - PubMed
  27. Biomaterials. 2011 Mar;32(7):1915-22 - PubMed
  28. Science. 2002 Sep 20;297(5589):2056-60 - PubMed
  29. EMBO J. 2002 Sep 2;21(17):4663-70 - PubMed
  30. Nature. 2008 Sep 4;455(7209):64-71 - PubMed
  31. Nature. 2011 May 19;473(7347):337-42 - PubMed
  32. Dev Cell. 2003 Aug;5(2):351-8 - PubMed
  33. Nature. 2011 Jul 13;476(7359):228-31 - PubMed
  34. Nat Protoc. 2009;4(11):1663-9 - PubMed
  35. RNA. 2004 Dec;10(12):1957-66 - PubMed
  36. Science. 2004 Apr 23;304(5670):594-6 - PubMed
  37. Genes Dev. 2003 Dec 15;17(24):3011-6 - PubMed
  38. Nucleic Acids Res. 2010 Nov;38(21):7689-97 - PubMed
  39. J Neurosci. 2004 May 5;24(18):4324-32 - PubMed
  40. Biotechniques. 2006 Dec;41(6):727-32 - PubMed
  41. J Neurosci. 2008 Dec 31;28(53):14341-6 - PubMed
  42. Cell. 2003 Oct 17;115(2):199-208 - PubMed
  43. Science. 2011 Feb 11;331(6018):764-8 - PubMed
  44. Nat Biotechnol. 2002 Jan;20(1):87-90 - PubMed
  45. Mol Syst Biol. 2013 Dec 03;9:711 - PubMed
  46. Curr Med Chem. 2013;20(29):3594-603 - PubMed
  47. Cell. 2003 Oct 17;115(2):209-16 - PubMed
  48. Sci Rep. 2014 Apr 09;4:4626 - PubMed
  49. Cell. 2012 Nov 21;151(5):1055-67 - PubMed
  50. Biophys J. 2012 Apr 18;102(8):1712-21 - PubMed
  51. Nat Biotechnol. 2007 Dec;25(12):1457-67 - PubMed
  52. Gene. 1991 Jul 22;103(2):171-7 - PubMed
  53. Int J Biochem Cell Biol. 2009 Nov;41(11):2225-31 - PubMed
  54. Nucleic Acids Res. 2012 Jun;40(11):4742-53 - PubMed
  55. Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14163-8 - PubMed
  56. Cell. 2009 Jan 23;136(2):215-33 - PubMed
  57. Biochem J. 2010 May 13;428(2):281-91 - PubMed
  58. Cell. 2006 Jun 2;125(5):887-901 - PubMed
  59. Nat Biotechnol. 2009 Jun;27(6):549-55 - PubMed
  60. BMC Genomics. 2013 Apr 18;14:264 - PubMed
  61. Science. 2004 Sep 3;305(5689):1437-41 - PubMed
  62. Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16426-31 - PubMed
  63. RNA. 2012 Nov;18(11):2083-92 - PubMed
  64. Protein Eng. 1999 Dec;12(12):1035-40 - PubMed

Substances

MeSH terms

Publication Types