Display options
Share it on

Oncogenesis. 2017 Sep 25;6(9):e381. doi: 10.1038/oncsis.2017.80.

PRAS40 promotes NF-κB transcriptional activity through association with p65.

Oncogenesis

G Zhu, Q Qi, J J Havel, Z Li, Y Du, X Zhang, H Fu

Affiliations

  1. Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.
  2. Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA.
  3. Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.

PMID: 28945219 PMCID: PMC5623906 DOI: 10.1038/oncsis.2017.80

Abstract

PRAS40 has been shown to have a crucial role in the repression of mammalian target of rapamycin (mTOR). Nonetheless, PRAS40 appears to have an oncogenic function in cancer cells. Whether PRAS40 mediates signaling independent of mTOR inhibition in cancer cells remains elusive. Here PRAS40 overexpression in lung adenocarcinoma and cutaneous melanoma was significantly correlated to worse prognosis. And we identified an unexpected role for PRAS40 in the regulation of nuclear factor (NF)-κB signaling. P65, a subunit of the NF-κB transcription factor complex, was confirmed to associate with PRAS40 by glutathione S-transferase co-precipitation. Importantly, we found that PRAS40 can enhance NF-κB transcriptional activity in a manner dependent upon PRAS40-P65 association. Furthermore, we found that a small p65-derived peptide can disrupt the PRAS40-P65 association and significantly decrease NF-κB transcriptional activity. These findings may help elucidate the pleiotropic functions of PRAS40 in cells and suggest a novel therapeutic strategy in cancer patients with high expression of PRAS40 and NF-κB.

References

  1. Cell. 1998 Dec 11;95(6):749-58 - PubMed
  2. Genes Dev. 2012 Feb 1;26(3):203-34 - PubMed
  3. Nature. 1998 Jan 22;391(6665):410-3 - PubMed
  4. Physiol Rev. 2010 Apr;90(2):495-511 - PubMed
  5. Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12661-6 - PubMed
  6. Cell. 1986 Dec 26;47(6):921-8 - PubMed
  7. Diabetologia. 2013 May;56(5):1118-28 - PubMed
  8. Cell Cycle. 2013 Dec 1;12(23):3579-80 - PubMed
  9. Scand J Gastroenterol. 2015 Apr;50(4):503-4 - PubMed
  10. J Biol Chem. 2003 Mar 21;278(12):10189-94 - PubMed
  11. Science. 1988 Oct 28;242(4878):540-6 - PubMed
  12. Cell Signal. 2010 Jun;22(6):961-7 - PubMed
  13. Cancer Res. 2012 Mar 1;72(5):1260-9 - PubMed
  14. Oncogene. 1999 Nov 22;18(49):6853-66 - PubMed
  15. Oncogene. 2015 Mar 19;34(12 ):1487-98 - PubMed
  16. Cell. 1991 Mar 8;64(5):961-9 - PubMed
  17. Genes Dev. 2008 Jun 1;22(11):1490-500 - PubMed
  18. J Biol Chem. 2007 Jul 13;282(28):20329-39 - PubMed
  19. Am J Physiol Endocrinol Metab. 2012 Jun 15;302(12):E1453-60 - PubMed
  20. Sci Signal. 2013 Apr 02;6(269):pl1 - PubMed
  21. EMBO Mol Med. 2014 Jan;6(1):57-65 - PubMed
  22. J Cell Physiol. 2010 Oct;225(1):27-41 - PubMed
  23. J Biol Chem. 2008 Jun 6;283(23):15619-27 - PubMed
  24. Cancer Res. 2007 Apr 15;67(8):3626-36 - PubMed
  25. J Biol Chem. 2007 Jul 6;282(27):20036-44 - PubMed
  26. Science. 2011 Jun 10;332(6035):1317-22 - PubMed
  27. Nat Methods. 2015 Jan;12(1):7-8 - PubMed
  28. Arch Physiol Biochem. 2014 May;120(2):64-72 - PubMed
  29. Hum Mol Genet. 2012 Mar 1;21(5):1049-61 - PubMed
  30. Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2467-72 - PubMed
  31. Cell Signal. 2014 Jul;26(7):1437-44 - PubMed
  32. Mol Cell. 2007 Mar 23;25(6):903-15 - PubMed
  33. Cell. 2007 Jun 15;129(6):1111-23 - PubMed

Publication Types

Grant support