Display options
Share it on

Sci Rep. 2017 Sep 11;7(1):11233. doi: 10.1038/s41598-017-10455-2.

Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars.

Scientific reports

Cristina Santín, Stefan H Doerr, Agustin Merino, Thomas D Bucheli, Rob Bryant, Philippa Ascough, Xiaodong Gao, Caroline A Masiello

Affiliations

  1. Department of Geography, College of Science, Swansea University, Singleton Park, Swansea, SA2 8PP, UK. [email protected].
  2. Department of Biosciences, College of Science, Swansea University, Singleton Park, Swansea, SA2 8PP, UK. [email protected].
  3. Department of Geography, College of Science, Swansea University, Singleton Park, Swansea, SA2 8PP, UK.
  4. Department of Soil Science and Agricultural Chemistry, University of Santiago de Compostela, 27002, Lugo, Spain.
  5. Agroscope, Environmental Analytics, Reckenholzstrasse 191, 8046 Zürich, Switzerland.
  6. NERC-RCF, Scottish Universities Environmental Research Centre, Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride, G75 0QF, Scotland, UK.
  7. Department of Earth, Environment, and Planetary Sciences, Rice University, 6100 Main St MS 126, Houston, Texas, 77005, USA.

PMID: 28894167 PMCID: PMC5594023 DOI: 10.1038/s41598-017-10455-2

Abstract

Pyrogenic carbon (PyC), produced naturally (wildfire charcoal) and anthropogenically (biochar), is extensively studied due to its importance in several disciplines, including global climate dynamics, agronomy and paleosciences. Charcoal and biochar are commonly used as analogues for each other to infer respective carbon sequestration potentials, production conditions, and environmental roles and fates. The direct comparability of corresponding natural and anthropogenic PyC, however, has never been tested. Here we compared key physicochemical properties (elemental composition, δ

References

  1. Sci Total Environ. 2014 Feb 1;470-471:1441-9 - PubMed
  2. Chemosphere. 2004 Sep;56(11):1061-76 - PubMed
  3. Environ Res. 2011 Feb;111(2):193-8 - PubMed
  4. J Hazard Mater. 2013 Jul 15;256-257:1-9 - PubMed
  5. Environ Sci Technol. 2015 Dec 15;49(24):14057-64 - PubMed
  6. Glob Chang Biol. 2017 Aug;23 (8):3205-3218 - PubMed
  7. Nat Commun. 2016 Oct 21;7:13160 - PubMed
  8. Environ Sci Technol. 2010 Feb 15;44(4):1247-53 - PubMed
  9. Sci Total Environ. 2016 Sep 1;563-564:237-46 - PubMed
  10. Glob Chang Biol. 2015 Apr;21(4):1621-33 - PubMed
  11. PLoS One. 2014 Mar 10;9(3):e91114 - PubMed
  12. J Sci Food Agric. 2016 Dec;96(15):4840-4849 - PubMed
  13. Environ Sci Technol. 2013 Oct 15;47(20):11490-5 - PubMed
  14. Sci Total Environ. 2006 Feb 15;355(1-3):156-66 - PubMed
  15. J Agric Food Chem. 2013 Oct 2;61(39):9401-11 - PubMed
  16. J Agric Food Chem. 2012 Mar 28;60(12 ):3042-50 - PubMed
  17. Environ Sci Technol. 2016 Aug 16;50(16):8578-85 - PubMed
  18. Nat Commun. 2010 Aug 10;1:56 - PubMed
  19. J Environ Qual. 2012 Jul-Aug;41(4):990-1000 - PubMed
  20. Environ Sci Technol. 2012 Sep 4;46(17):9571-6 - PubMed
  21. Sci Rep. 2017 May 9;7(1):1592 - PubMed
  22. Environ Sci Technol. 2012 Feb 7;46(3):1415-21 - PubMed
  23. Glob Chang Biol. 2016 May;22(5):1942-56 - PubMed
  24. Environ Sci Technol. 2010 Feb 15;44(4):1295-301 - PubMed
  25. Glob Chang Biol. 2016 Jan;22(1):76-91 - PubMed
  26. Environ Sci Technol. 2012 Sep 4;46(17 ):9333-41 - PubMed

Publication Types