Display options
Share it on

Oncotarget. 2017 Sep 23;8(46):80373-80392. doi: 10.18632/oncotarget.21268. eCollection 2017 Oct 06.

Inference of time-delayed gene regulatory networks based on dynamic Bayesian network hybrid learning method.

Oncotarget

Bin Yu, Jia-Meng Xu, Shan Li, Cheng Chen, Rui-Xin Chen, Lei Wang, Yan Zhang, Ming-Hui Wang

Affiliations

  1. College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China.
  2. CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Science, University of Science and Technology of China, Hefei 230026, China.
  3. Bioinformatics and Systems Biology Research Center, Qingdao University of Science and Technology, Qingdao 266061, China.
  4. Key Laboratory of Eco-chemical Engineering, Ministry of Education, Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
  5. College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China.

PMID: 29113310 PMCID: PMC5655205 DOI: 10.18632/oncotarget.21268

Abstract

Gene regulatory networks (GRNs) research reveals complex life phenomena from the perspective of gene interaction, which is an important research field in systems biology. Traditional Bayesian networks have a high computational complexity, and the network structure scoring model has a single feature. Information-based approaches cannot identify the direction of regulation. In order to make up for the shortcomings of the above methods, this paper presents a novel hybrid learning method (DBNCS) based on dynamic Bayesian network (DBN) to construct the multiple time-delayed GRNs for the first time, combining the comprehensive score (CS) with the DBN model. DBNCS algorithm first uses CMI2NI (conditional mutual inclusive information-based network inference) algorithm for network structure profiles learning, namely the construction of search space. Then the redundant regulations are removed by using the recursive optimization algorithm (RO), thereby reduce the false positive rate. Secondly, the network structure profiles are decomposed into a set of cliques without loss, which can significantly reduce the computational complexity. Finally, DBN model is used to identify the direction of gene regulation within the cliques and search for the optimal network structure. The performance of DBNCS algorithm is evaluated by the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in

Keywords: comprehensive score model; dynamic Bayesian network; gene regulatory networks; multiple time-delayed; network structure profiles

Conflict of interest statement

CONFLICTS OF INTEREST The authors declare no conflicts of interest.

References

  1. Mol Biosyst. 2016 Feb;12 (2):588-97 - PubMed
  2. Bioinformatics. 2001;17 Suppl 1:S215-24 - PubMed
  3. Bioinformatics. 2012 Jan 1;28(1):98-104 - PubMed
  4. Bioinformatics. 2011 Oct 1;27(19):2686-91 - PubMed
  5. Dev Cell. 2014 Feb 10;28(3):225-38 - PubMed
  6. Sci Rep. 2016 Feb 11;6:20533 - PubMed
  7. Bioinformatics. 2014 Feb 1;30(3):377-83 - PubMed
  8. Brief Bioinform. 2014 Mar;15(2):195-211 - PubMed
  9. Nucleic Acids Res. 2015 Mar 11;43(5):e31 - PubMed
  10. BMC Evol Biol. 2012 Sep 06;12:173 - PubMed
  11. BMC Syst Biol. 2017 Jun 19;11(1):62 - PubMed
  12. Bioinformatics. 2011 Feb 1;27(3):431-2 - PubMed
  13. Nat Methods. 2012 Jul 15;9(8):796-804 - PubMed
  14. Nat Rev Microbiol. 2010 Oct;8(10):717-29 - PubMed
  15. Bioinformatics. 2013 Jan 1;29(1):106-13 - PubMed
  16. Ann N Y Acad Sci. 2007 Dec;1115:1-22 - PubMed
  17. Science. 2006 Feb 10;311(5762):796-800 - PubMed
  18. Bioinformatics. 2006 Oct 1;22(19):2413-20 - PubMed
  19. Genome Res. 2003 Nov;13(11):2498-504 - PubMed
  20. Bioinformatics. 2005 Feb 1;21(3):349-56 - PubMed
  21. Methods Mol Biol. 2012;802:185-97 - PubMed
  22. Nature. 2002 Nov 14;420(6912):206-10 - PubMed
  23. Bioinformatics. 2011 Jul 1;27(13):1876-7 - PubMed
  24. Biol Direct. 2011 Jun 22;6:31 - PubMed
  25. Ann N Y Acad Sci. 2009 Mar;1158:71-81 - PubMed
  26. Comput Biol Med. 2014 May;48:55-65 - PubMed
  27. Bioinformatics. 2008 Feb 15;24(4):553-60 - PubMed
  28. Science. 2002 Mar 1;295(5560):1678-82 - PubMed
  29. Bioinformatics. 2002 Feb;18(2):261-74 - PubMed
  30. Nat Genet. 2002 May;31(1):64-8 - PubMed
  31. PLoS Biol. 2007 Jan;5(1):e8 - PubMed
  32. Bioinformatics. 2014 Mar 15;30(6):860-7 - PubMed
  33. Cell. 2011 Oct 14;147(2):370-81 - PubMed
  34. BMC Bioinformatics. 2007 Nov 01;8 Suppl 7:S13 - PubMed
  35. Pac Symp Biocomput. 2000;:418-29 - PubMed
  36. BMC Bioinformatics. 2012 Jun 13;13:131 - PubMed
  37. J Biomed Inform. 2007 Dec;40(6):609-18 - PubMed
  38. BMC Bioinformatics. 2017 May 8;18(1):241 - PubMed
  39. PLoS One. 2014 Feb 14;9(2):e87446 - PubMed
  40. Bioinformatics. 2005 Jun 15;21(12):2883-90 - PubMed
  41. Bioinformatics. 2004 Dec 12;20(18):3594-603 - PubMed
  42. BMC Syst Biol. 2012 Aug 28;6:113 - PubMed
  43. Neural Netw. 2015 Sep;69:11-9 - PubMed
  44. BMC Bioinformatics. 2010 Oct 07;11 Suppl 6:S19 - PubMed
  45. Proc Natl Acad Sci U S A. 2016 May 3;113(18):5130-5 - PubMed
  46. IEEE/ACM Trans Comput Biol Bioinform. 2016 Jul-Aug;13(4):792-803 - PubMed
  47. Nat Genet. 2004 May;36(5):492-6 - PubMed
  48. Science. 2002 Mar 1;295(5560):1662-4 - PubMed
  49. Comput Methods Programs Biomed. 2009 May;94(2):177-80 - PubMed
  50. Bioinformatics. 2015 Jul 1;31(13):2151-8 - PubMed
  51. PLoS One. 2016 Nov 9;11(11):e0166115 - PubMed
  52. J Comput Biol. 2009 Feb;16(2):229-39 - PubMed
  53. Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6286-91 - PubMed
  54. Curr Genomics. 2015 Feb;16(1):3-22 - PubMed
  55. Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10555-60 - PubMed
  56. Proc Natl Acad Sci U S A. 2017 Jun 20;114(25):E4914-E4923 - PubMed
  57. Bioinformatics. 2005 Jan 1;21(1):71-9 - PubMed
  58. Bioinformatics. 2012 Jun 15;28(12):i233-41 - PubMed
  59. BMC Bioinformatics. 2009 Apr 29;10 Suppl 4:S6 - PubMed
  60. J Biomed Inform. 2015 Feb;53:27-35 - PubMed
  61. PLoS Comput Biol. 2016 Aug 01;12 (8):e1005024 - PubMed
  62. J Theor Biol. 2014 Dec 7;362:53-61 - PubMed
  63. Bioinformatics. 2011 Aug 15;27(16):2263-70 - PubMed
  64. Front Genet. 2012 Feb 03;3:8 - PubMed
  65. BMC Bioinformatics. 2010 May 05;11:228 - PubMed
  66. PLoS One. 2016 May 12;11(5):e0154953 - PubMed
  67. BMC Bioinformatics. 2006 Mar 20;7 Suppl 1:S7 - PubMed
  68. Biochim Biophys Acta. 2017 Jan;1860(1):41-52 - PubMed
  69. Nat Biotechnol. 2009 Sep;27(9):829-39 - PubMed
  70. Neural Netw. 2015 Sep;69:1-10 - PubMed

Publication Types