Display options
Share it on

Cytotechnology. 2018 Apr;70(2):651-664. doi: 10.1007/s10616-017-0166-4. Epub 2017 Nov 15.

Aligned ovine diaphragmatic myoblasts overexpressing human connexin-43 seeded on poly (L-lactic acid) scaffolds for potential use in cardiac regeneration.

Cytotechnology

Carlos Sebastián Giménez, Paola Locatelli, Florencia Montini Ballarin, Alejandro Orlowski, Ricardo A Dewey, Milagros Pena, Gustavo Abel Abraham, Ernesto Alejandro Aiello, María Del Rosario Bauzá, Luis Cuniberti, Fernanda Daniela Olea, Alberto Crottogini

Affiliations

  1. Instituto de Medicina Traslacional, Transplante y Bioingeniería (IMETTYB), Universidad Favaloro-CONICET, Solís 453, C1078AAI, Buenos Aires, Argentina. [email protected].
  2. Instituto de Medicina Traslacional, Transplante y Bioingeniería (IMETTYB), Universidad Favaloro-CONICET, Solís 453, C1078AAI, Buenos Aires, Argentina.
  3. Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Universidad Nacional de Mar del Plata-CONICET, Mar del Plata, Argentina.
  4. Centro de Investigaciones Cardiológicas (CIC), Universidad Nacional de La Plata-CONICET, La Plata, Argentina.
  5. Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín-CONICET, Chascomús, Argentina.

PMID: 29143226 PMCID: PMC5851959 DOI: 10.1007/s10616-017-0166-4

Abstract

Diaphragmatic myoblasts (DMs) are precursors of type-1 muscle cells displaying high exhaustion threshold on account that they contract and relax 20 times/min over a lifespan, making them potentially useful in cardiac regeneration strategies. Besides, it has been shown that biomaterials for stem cell delivery improve cell retention and viability in the target organ. In the present study, we aimed at developing a novel approach based on the use of poly (L-lactic acid) (PLLA) scaffolds seeded with DMs overexpressing connexin-43 (cx43), a gap junction protein that promotes inter-cell connectivity. DMs isolated from ovine diaphragm biopsies were characterized by immunohistochemistry and ability to differentiate into myotubes (MTs) and transduced with a lentiviral vector encoding cx43. After confirming cx43 expression (RT-qPCR and Western blot) and its effect on inter-cell connectivity (fluorescence recovery after photobleaching), DMs were grown on fiber-aligned or random PLLA scaffolds. DMs were successfully isolated and characterized. Cx43 mRNA and protein were overexpressed and favored inter-cell connectivity. Alignment of the scaffold fibers not only aligned but also elongated the cells, increasing the contact surface between them. This novel approach is feasible and combines the advantages of bioresorbable scaffolds as delivery method and a cell type that on account of its features may be suitable for cardiac regeneration. Future studies on animal models of myocardial infarction are needed to establish its usefulness on scar reduction and cardiac function.

Keywords: Absorbable implants; Connexin-43; Diaphragm; Fluorescence recovery after photobleaching; Myoblasts; Poly (L-lactic acid); Sheep

References

  1. Nature. 2003 Aug 21;424(6951):870-2 - PubMed
  2. Int J Biol Macromol. 2015 Jan;72 :1048-55 - PubMed
  3. J Cell Mol Med. 2009 Sep;13(9B):3703-12 - PubMed
  4. J Invest Dermatol. 1999 Apr;112(4):411-8 - PubMed
  5. J Biomater Appl. 2014 Sep;29(3):364-77 - PubMed
  6. Prog Polym Sci. 2010 Jul 1;35(7):868-892 - PubMed
  7. Circulation. 2008 Mar 4;117(9):1189-200 - PubMed
  8. J Am Coll Cardiol. 2003 Apr 2;41(7):1078-83 - PubMed
  9. Acta Biomater. 2015 Oct;26:105-14 - PubMed
  10. Cell Biochem Funct. 2010 Jul;28(5):403-11 - PubMed
  11. Circ Res. 2005 Jul 22;97(2):159-67 - PubMed
  12. J Mater Sci Mater Med. 2010 Mar;21(3):989-97 - PubMed
  13. J Thorac Cardiovasc Surg. 2001 Oct;122(4):759-66 - PubMed
  14. Am Heart J. 2004 Sep;148(3):531-7 - PubMed
  15. J Biomed Mater Res B Appl Biomater. 2011 Feb;96(2):276-86 - PubMed
  16. Brain Res Bull. 2011 Nov 25;86(5-6):314-8 - PubMed
  17. Mater Sci Eng C Mater Biol Appl. 2014 Sep;42:489-99 - PubMed
  18. Biotechnol Bioeng. 2014 Jan;111(1):184-95 - PubMed
  19. Biomacromolecules. 2014 Feb 10;15(2):618-27 - PubMed
  20. J Am Coll Cardiol. 2012 Sep 18;60(12):1103-10 - PubMed
  21. J Cell Biol. 1999 Mar 22;144(6):1113-22 - PubMed
  22. Acta Biomater. 2016 Jul 15;39:44-54 - PubMed
  23. Curr Opin Cardiol. 2012 May;27(3):236-41 - PubMed
  24. Ann N Y Acad Sci. 2004 May;1015:312-9 - PubMed
  25. J Physiol. 2014 Oct 15;592(20):4431-46 - PubMed
  26. Cytotechnology. 2016 Aug;68(4):665-74 - PubMed
  27. J Tissue Eng Regen Med. 2015 Aug;9(8):861-88 - PubMed
  28. Cell Transplant. 2005;14(1):11-9 - PubMed
  29. Cardiovasc Res. 2006 Feb 1;69(2):348-58 - PubMed
  30. Cardiol Res Pract. 2012;2012:240497 - PubMed
  31. Differentiation. 1995 Nov;59(4):259-68 - PubMed
  32. Circulation. 2000 Jun 27;101(25):2981-8 - PubMed
  33. Biotechnol J. 2013 Jan;8(1):59-72 - PubMed

Publication Types

Grant support