Display options
Share it on

ACS Cent Sci. 2017 Dec 27;3(12):1311-1321. doi: 10.1021/acscentsci.7b00465. Epub 2017 Nov 21.

Prediction of New Stabilizing Mutations Based on Mechanistic Insights from Markov State Models.

ACS central science

Maxwell I Zimmerman, Kathryn M Hart, Carrie A Sibbald, Thomas E Frederick, John R Jimah, Catherine R Knoverek, Niraj H Tolia, Gregory R Bowman

Affiliations

  1. Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States.
  2. Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States.
  3. Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States.

PMID: 29296672 PMCID: PMC5746865 DOI: 10.1021/acscentsci.7b00465

Abstract

Protein stabilization is fundamental to enzyme function and evolution, yet understanding the determinants of a protein's stability remains a challenge. This is largely due to a shortage of atomically detailed models for the ensemble of relevant protein conformations and their relative populations. For example, the M182T substitution in TEM β-lactamase, an enzyme that confers antibiotic resistance to bacteria, is stabilizing but the precise mechanism remains unclear. Here, we employ Markov state models (MSMs) to uncover how M182T shifts the distribution of different structures that TEM adopts. We find that M182T stabilizes a helix that is a key component of a domain interface. We then predict the effects of other mutations, including a novel stabilizing mutation, and experimentally test our predictions using a combination of stability measurements, crystallography, NMR, and

Conflict of interest statement

The authors declare no competing financial interest.

References

  1. Proteins. 1995 Sep;23(1):63-72 - PubMed
  2. J Comput Chem. 2003 Dec;24(16):1999-2012 - PubMed
  3. Nat Commun. 2016 Oct 06;7:12965 - PubMed
  4. Prog Biophys Mol Biol. 1984;44(2):97-179 - PubMed
  5. Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11681-6 - PubMed
  6. Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21 - PubMed
  7. Biochemistry. 2006 Sep 26;45(38):11414-24 - PubMed
  8. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8801-6 - PubMed
  9. Protein Sci. 1995 Oct;4(10):2138-48 - PubMed
  10. J Mol Biol. 2002 Jun 28;320(1):85-95 - PubMed
  11. Science. 1988 Jun 17;240(4859):1648-52 - PubMed
  12. Nat Struct Biol. 2001 Mar;8(3):238-42 - PubMed
  13. J Chem Theory Comput. 2013 Jan 8;9(1):461-469 - PubMed
  14. J Chem Phys. 2007 Jan 7;126(1):014101 - PubMed
  15. Biochemistry. 2008 Jan 29;47(4):1186-93 - PubMed
  16. J Chem Theory Comput. 2011 Oct 11;7(10):3412-3419 - PubMed
  17. Biophys J. 2015 Oct 20;109 (8):1528-32 - PubMed
  18. Methods Enzymol. 2016;578:213-25 - PubMed
  19. Cell Mol Life Sci. 1998 Apr;54(4):372-7 - PubMed
  20. Protein Sci. 1995 Jul;4(7):1325-36 - PubMed
  21. J Comput Chem. 2016 Mar 5;37(6):558-66 - PubMed
  22. Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21 - PubMed
  23. PLoS One. 2017 Jun 1;12 (6):e0178678 - PubMed
  24. Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):283-8 - PubMed
  25. Biochemistry. 1988 Oct 18;27(21):8063-8 - PubMed
  26. J Chem Theory Comput. 2015 Dec 8;11(12):5747-57 - PubMed
  27. J Mol Biol. 2008 Oct 31;383(1):238-51 - PubMed
  28. Biochemistry. 2000 Sep 26;39(38):11677-83 - PubMed
  29. Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 - PubMed
  30. J Chem Theory Comput. 2008 Jan;4(1):116-22 - PubMed
  31. Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2734-9 - PubMed
  32. Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32 - PubMed
  33. Proteins. 2004 May 1;55(2):383-94 - PubMed
  34. Curr Opin Struct Biol. 2014 Apr;25:135-44 - PubMed
  35. Biophys J. 2017 Jan 10;112(1):10-15 - PubMed
  36. FEMS Microbiol Rev. 2010 Nov;34(6):1015-36 - PubMed

Publication Types

Grant support