Display options
Share it on

AMB Express. 2018 Jan 08;8(1):4. doi: 10.1186/s13568-017-0529-4.

Feasibility and transcriptomic analysis of betalain production by biomembrane surface fermentation of Penicillium novae-zelandiae.

AMB Express

Hailei Wang, Yi Li, Kun Zhang, Yingqun Ma, Ping Li

Affiliations

  1. Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
  2. Advanced Environmental Biotechnology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore.
  3. Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China. [email protected].

PMID: 29313259 PMCID: PMC5758489 DOI: 10.1186/s13568-017-0529-4

Abstract

In this study, a biomembrane surface fermentation was used to produce red pigments of Penicillium novae-zelandiae, and the significant improvement in pigment production by the addition of 0.4 g/L of tyrosine demonstrated that the red pigments probably contained betalain. Therefore, one red pigment was purified, and identified as 2-decarboxybetanin by high-resolution mass spectrometry (MS) and MS/MS analysis. Transcriptomic analysis revealed the differentially expressed genes and metabolic profile of P. novae-zelandiae in response to different cultivations and exhibited the complete biosynthetic pathway of 2-decarboxybetanin in P. novae-zelandiae. Betalains are important water-soluble nitrogen-containing food coloring agents, obtained mainly from beetroot by chemical extraction. This paper is the first report about the production of betalain by microbial fermentation, and results exhibit the possible use of fungal fermentation in future 2-decarboxybetanin production.

Keywords: Betalains; Biomembrane surface cultivation; Penicillium novae-zelandiae; RNA sequencing; Tyrosine

References

  1. BMC Bioinformatics. 2011 Aug 04;12:323 - PubMed
  2. Curr Opin Biotechnol. 2005 Apr;16(2):231-8 - PubMed
  3. Bioprocess Biosyst Eng. 2012 Oct;35(8):1407-16 - PubMed
  4. Methods. 2001 Dec;25(4):402-8 - PubMed
  5. Analyst. 2010 Nov;135(11):2970-8 - PubMed
  6. Phytomedicine. 2007 Nov;14(11):739-46 - PubMed
  7. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W316-22 - PubMed
  8. Crit Rev Food Sci Nutr. 2000 May;40(3):173-289 - PubMed
  9. Microb Cell Fact. 2009 Apr 27;8:24 - PubMed
  10. J Agric Food Chem. 2006 Jan 25;54(2):390-8 - PubMed
  11. J Pharm Biomed Anal. 2012 Mar 25;62:258-73 - PubMed
  12. J Agric Food Chem. 2013 Jul 3;61(26):6465-76 - PubMed
  13. Appl Environ Microbiol. 2010 Jun;76(11):3599-610 - PubMed
  14. Bioresour Technol. 2012 Apr;109:282-6 - PubMed
  15. J Agric Food Chem. 2001 Nov;49(11):5178-85 - PubMed
  16. Bioresour Technol. 2011 May;102(10):6082-7 - PubMed
  17. Appl Microbiol Biotechnol. 2000 May;53(5):509-16 - PubMed
  18. Phytochemistry. 2003 Feb;62(3):247-69 - PubMed
  19. BMC Genomics. 2013 Jul 09;14:460 - PubMed
  20. Trends Biotechnol. 2010 Jun;28(6):300-7 - PubMed

Publication Types

Grant support