Display options
Share it on

Oncotarget. 2017 Oct 19;8(61):104007-104021. doi: 10.18632/oncotarget.21945. eCollection 2017 Nov 28.

Microtubins: a novel class of small synthetic microtubule targeting drugs that inhibit cancer cell proliferation.

Oncotarget

Silvia Senese, Yu-Chen Lo, Ankur A Gholkar, Chien-Ming Li, Yong Huang, Jack Mottahedeh, Harley I Kornblum, Robert Damoiseaux, Jorge Z Torres

Affiliations

  1. Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.
  2. Department of Bioengineering, University of California, Los Angeles, CA 90095, USA.
  3. Drug Studies Unit, Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, CA 94143, USA.
  4. Department of Molecular and Medical Pharmacology, Los Angeles, CA 90095, USA.
  5. Department of Psychiatry, University of California, Los Angeles, CA 90095, USA.
  6. The Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA.
  7. Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA.
  8. California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.
  9. Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.

PMID: 29262617 PMCID: PMC5732783 DOI: 10.18632/oncotarget.21945

Abstract

Microtubule targeting drugs like taxanes, vinca alkaloids, and epothilones are widely-used and effective chemotherapeutic agents that target the dynamic instability of microtubules and inhibit spindle functioning. However, these drugs have limitations associated with their production, solubility, efficacy and unwanted toxicities, thus driving the need to identify novel antimitotic drugs that can be used as anticancer agents. We have discovered and characterized the Microtubins (Microtubule inhibitors), a novel class of small synthetic compounds, which target tubulin to inhibit microtubule polymerization, arrest cancer cells predominantly in mitosis, activate the spindle assembly checkpoint and trigger an apoptotic cell death. Importantly, the Microtubins do not compete for the known vinca or colchicine binding sites. Additionally, through chemical synthesis and structure-activity relationship studies, we have determined that specific modifications to the Microtubin phenyl ring can activate or inhibit its bioactivity. Combined, these data define the Microtubins as a novel class of compounds that inhibit cancer cell proliferation by perturbing microtubule polymerization and they could be used to develop novel cancer therapeutics.

Keywords: cancer cell proliferation; cell cycle; cell division; microtubules; tubulin-targeting agents

Conflict of interest statement

CONFLICTS OF INTEREST S.S., Y-C.L., R.D. and J.Z.T. are authors on a pending patent on the Microtubins. The other authors have no conflicts of interest to disclose.

References

  1. Top Curr Chem. 2009;286:279-328 - PubMed
  2. ACS Chem Biol. 2016 Aug 19;11(8):2244-53 - PubMed
  3. Curr Med Chem. 2009;16(11):1315-24 - PubMed
  4. Cell. 2008 Feb 8;132(3):487-98 - PubMed
  5. J Pharm Sci. 1999 Aug;88(8):815-21 - PubMed
  6. Drug Resist Updat. 2001 Dec;4(6):392-401 - PubMed
  7. Cell. 2011 Dec 9;147(6):1309-23 - PubMed
  8. J Immunol Methods. 1993 Mar 15;160(1):81-8 - PubMed
  9. J Chem Inf Model. 2005 Jan-Feb;45(1):177-82 - PubMed
  10. J Med Chem. 2006 Jun 1;49(11):3305-14 - PubMed
  11. Cell Death Dis. 2012 Oct 18;3:e411 - PubMed
  12. Cell Death Differ. 2012 Mar;19(3):369-77 - PubMed
  13. Adv Enzyme Regul. 1984;22:27-55 - PubMed
  14. Nat Rev Drug Discov. 2010 Oct;9(10):790-803 - PubMed
  15. Mol Interv. 2011 Apr;11(2):141-50 - PubMed
  16. Open Biol. 2015 Mar;5(3):140156 - PubMed
  17. Nat Rev Clin Oncol. 2011 Feb 01;8(4):244-50 - PubMed
  18. Cancer Res. 1987 May 15;47(10):2594-8 - PubMed
  19. Mol Cancer Ther. 2011 Oct;10(10):1818-28 - PubMed
  20. Protein Sci. 2015 Jul;24(7):1164-72 - PubMed
  21. Chem Res Toxicol. 1988 Jul-Aug;1(4):234-7 - PubMed
  22. Curr Biol. 2016 Jul 11;26(13):1713-21 - PubMed
  23. Cell Death Dis. 2014 Oct 16;5:e1462 - PubMed
  24. J Cell Biol. 2000 Sep 4;150(5):975-88 - PubMed
  25. Nature. 2011 Mar 3;471(7336):110-4 - PubMed
  26. J Med Chem. 2002 Jun 6;45(12):2615-23 - PubMed
  27. Clin Breast Cancer. 2011 Apr;11(2):73-81 - PubMed
  28. Exp Mol Med. 2008 Feb 29;40(1):84-91 - PubMed
  29. Chromosoma. 1997 Nov;106(6):348-60 - PubMed
  30. Cancer Cell. 2008 Aug 12;14(2):111-22 - PubMed
  31. J Mass Spectrom. 2010 Oct;45(10):1160-6 - PubMed
  32. Adv Drug Deliv Rev. 2001 Mar 1;46(1-3):3-26 - PubMed
  33. Cancer Res. 2008 May 1;68(9):3269-76 - PubMed
  34. Mol Cancer Ther. 2007 Feb;6(2):450-9 - PubMed
  35. Mol Biol Cell. 2012 Feb;23 (4):567-76 - PubMed
  36. Mar Drugs. 2015 Aug 07;13(8):5016-58 - PubMed
  37. PLoS Comput Biol. 2015 Mar 31;11(3):e1004153 - PubMed
  38. Mol Biol Cell. 2010 Mar 15;21(6):897-904 - PubMed
  39. Science. 2010 Apr 30;328(5978):593-9 - PubMed
  40. J Pharmacol Toxicol Methods. 2000 Jul-Aug;44(1):235-49 - PubMed
  41. Br J Clin Pharmacol. 2017 Feb;83(2):255-268 - PubMed
  42. Breast Cancer Res. 2010;12 Suppl 2:S2 - PubMed

Publication Types

Grant support