Display options
Share it on

Oncotarget. 2017 Dec 06;8(67):112036-112050. doi: 10.18632/oncotarget.23000. eCollection 2017 Dec 19.

Development of a targeted sequencing approach to identify prognostic, predictive and diagnostic markers in paediatric solid tumours.

Oncotarget

Elisa Izquierdo, Lina Yuan, Sally George, Michael Hubank, Chris Jones, Paula Proszek, Janet Shipley, Susanne A Gatz, Caedyn Stinson, Andrew S Moore, Steven C Clifford, Debbie Hicks, Janet C Lindsey, Rebecca M Hill, Thomas S Jacques, Jane Chalker, Khin Thway, Simon O'Connor, Lynley Marshall, Lucas Moreno, Andrew Pearson, Louis Chesler, Brian A Walker, David Gonzalez De Castro

Affiliations

  1. Molecular Diagnostics Department, The Institute of Cancer Research and Clinical Genomics, The Royal Marsden NHS Foundation, London, United Kingdom.
  2. Glioma Team, Division of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom.
  3. Paediatric Tumour Biology, Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
  4. Paediatric Drug Development Team, Children and Young People's Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom.
  5. Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom.
  6. The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia.
  7. Oncology Service, Children's Health Queensland Hospital and Health Service, Brisbane, Australia.
  8. UQ Child Health Research Centre, The University of Queensland, Brisbane, Australia.
  9. Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, United Kingdom.
  10. Department of Histology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.
  11. Developmental Biology and Cancer Programme, UCL GOS Institute of Child Health, London, United Kingdom.
  12. Haematology, Cellular and Molecular Diagnostics Service, UCL GOS Institute of Child Health, London, United Kingdom.
  13. Sarcoma Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom.
  14. Haemato-Oncology Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom.
  15. HNJ-CNIO Clinical Research Unit and Hospital Universitario Niño Jesus, Madrid, Spain.
  16. Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
  17. Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom.

PMID: 29340109 PMCID: PMC5762377 DOI: 10.18632/oncotarget.23000

Abstract

The implementation of personalised medicine in childhood cancers has been limited by a lack of clinically validated multi-target sequencing approaches specific for paediatric solid tumours. In order to support innovative clinical trials in high-risk patients with unmet need, we have developed a clinically relevant targeted sequencing panel spanning 311 kb and comprising 78 genes involved in childhood cancers. A total of 132 samples were used for the validation of the panel, including Horizon Discovery cell blends (n=4), cell lines (n=15), formalin-fixed paraffin embedded (FFPE, n=83) and fresh frozen tissue (FF, n=30) patient samples. Cell blends containing known single nucleotide variants (SNVs, n=528) and small insertion-deletions (indels n=108) were used to define panel sensitivities of ≥98% for SNVs and ≥83% for indels [95% CI] and panel specificity of ≥98% [95% CI] for SNVs. FFPE samples performed comparably to FF samples (n=15 paired). Of 95 well-characterised genetic abnormalities in 33 clinical specimens and 13 cell lines (including SNVs, indels, amplifications, rearrangements and chromosome losses), 94 (98.9%) were detected by our approach. We have validated a robust and practical methodology to guide clinical management of children with solid tumours based on their molecular profiles. Our work demonstrates the value of targeted gene sequencing in the development of precision medicine strategies in paediatric oncology.

Keywords: childhood cancer; molecular diagnostics; panel validation; targeted sequencing; targeted therapies

Conflict of interest statement

CONFLICTS OF INTEREST The authors declared no conflicts of interest with the submitted paper.

References

  1. Nat Genet. 2013 Aug;45(8):927-32 - PubMed
  2. J Clin Oncol. 2008 May 10;26(14):2384-9 - PubMed
  3. Acta Neuropathol. 2016 Jun;131(6):803-20 - PubMed
  4. Eur J Cancer. 2016 Sep;65:91-101 - PubMed
  5. Science. 2014 Jan 10;343 (6167):189-193 - PubMed
  6. Nat Commun. 2015 Jul 03;6:7557 - PubMed
  7. J Clin Oncol. 2005 Nov 1;23 (31):7951-7 - PubMed
  8. Nature. 2008 Oct 16;455(7215):971-4 - PubMed
  9. Clin Cancer Res. 2004 Aug 15;10 (16):5482-93 - PubMed
  10. Cancer Discov. 2014 Feb;4(2):216-31 - PubMed
  11. Nature. 2012 Jan 29;482(7384):226-31 - PubMed
  12. Acta Neuropathol. 2015 Dec;130(6):815-27 - PubMed
  13. J Clin Pathol. 2010 Jun;63(6):508-12 - PubMed
  14. Eur J Hum Genet. 2010 Dec;18(12):1276-88 - PubMed
  15. Nature. 2012 Aug 2;488(7409):43-8 - PubMed
  16. Nature. 2015 Oct 29;526(7575):700-4 - PubMed
  17. J Clin Pathol. 2017 Jan;70(1):20-24 - PubMed
  18. J Mol Diagn. 2015 May;17(3):251-64 - PubMed
  19. JAMA Oncol. 2016 Jan 28;:null - PubMed
  20. Eur J Cancer. 2015 Jan;51(2):218-24 - PubMed
  21. Nat Genet. 2015 Dec;47(12 ):1411-4 - PubMed
  22. Cancer Res. 2008 May 1;68(9):3389-95 - PubMed
  23. Cell Cycle. 2016;15(3):311-2 - PubMed
  24. Nat Genet. 2013 Mar;45(3):279-84 - PubMed
  25. Cancer. 2014 Aug 15;120(16):2497-506 - PubMed
  26. J Mol Diagn. 2014 Jan;16(1):56-67 - PubMed
  27. Nature. 2008 Oct 16;455(7215):975-8 - PubMed
  28. N Engl J Med. 2004 May 20;350(21):2129-39 - PubMed
  29. J Pathol. 2014 Sep;234(1):5-10 - PubMed
  30. CA Cancer J Clin. 2012 Jan-Feb;62(1):10-29 - PubMed
  31. Clin Cancer Res. 2012 Feb 1;18(3):748-57 - PubMed
  32. Nature. 2012 Aug 2;488(7409):100-5 - PubMed
  33. J Mol Diagn. 2014 Jan;16(1):89-105 - PubMed
  34. N Engl J Med. 2011 Jun 30;364(26):2507-16 - PubMed
  35. Ann Oncol. 2015 Dec;26(12 ):2464-9 - PubMed
  36. Nat Biotechnol. 2013 Nov;31(11):1023-31 - PubMed
  37. Nat Genet. 2014 May;46(5):444-450 - PubMed
  38. Genet Med. 2015 May;17(5):405-24 - PubMed
  39. Nature. 2013 Aug 22;500(7463):415-21 - PubMed
  40. Cancer Discov. 2013 May;3(5):512-9 - PubMed
  41. N Engl J Med. 2010 Oct 28;363(18):1693-703 - PubMed
  42. Nature. 2012 Mar 28;483(7391):603-7 - PubMed
  43. Cancer Cell. 2015 Jan 12;27(1):72-84 - PubMed
  44. J Natl Cancer Inst. 2017 May 1;109 (5): - PubMed
  45. Semin Oncol. 2014 Jun;41(3):297-9 - PubMed
  46. Nat Commun. 2016 Apr 06;7:11185 - PubMed
  47. Cancer Genet. 2013 Dec;206(12):420-31 - PubMed
  48. JAMA. 2015 Sep 1;314(9):913-25 - PubMed
  49. J Clin Oncol. 2011 Aug 20;29(24):3286-92 - PubMed
  50. Nat Commun. 2014 Apr 08;5:3630 - PubMed
  51. Front Oncol. 2013 Jul 17;3:183 - PubMed
  52. Nat Genet. 2012 Jan 29;44(3):251-3 - PubMed
  53. Nat Genet. 2015 Aug;47(8):864-71 - PubMed
  54. Nature. 2012 Aug 2;488(7409):106-10 - PubMed

Publication Types

Grant support