Display options
Share it on

Front Neurosci. 2018 Jan 12;11:737. doi: 10.3389/fnins.2017.00737. eCollection 2017.

Parkinson's Disease Skin Fibroblasts Display Signature Alterations in Growth, Redox Homeostasis, Mitochondrial Function, and Autophagy.

Frontiers in neuroscience

Joji M Y Teves, Vedanshi Bhargava, Konner R Kirwan, Mandi J Corenblum, Rebecca Justiniano, Georg T Wondrak, Annadurai Anandhan, Andrew J Flores, David A Schipper, Zain Khalpey, James E Sligh, Clara Curiel-Lewandrowski, Scott J Sherman, Lalitha Madhavan

Affiliations

  1. Graduate Interdisciplinary Program in Applied Biosciences, University of Arizona, Tucson, AZ, United States.
  2. Neuroscience and Cognitive Science Undergraduate Program, Undergraduate Biology Research Program, University of Arizona, Tucson, AZ, United States.
  3. Department of Neurology, University of Arizona, Tucson, AZ, United States.
  4. Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States.
  5. Graduate Interdisciplinary Program in Physiological Sciences, University of Arizona, Tucson, AZ, United States.
  6. Department of Surgery, University of Arizona, Tucson, AZ, United States.
  7. Department of Medicine, University of Arizona, Tucson, AZ, United States.
  8. The Evelyn F McKnight Brain Institute, University of Arizona, Tucson, AZ, United States.

PMID: 29379409 PMCID: PMC5770791 DOI: 10.3389/fnins.2017.00737

Abstract

The discovery of biomarkers for Parkinson's disease (PD) is challenging due to the heterogeneous nature of this disorder, and a poor correlation between the underlying pathology and the clinically expressed phenotype. An ideal biomarker would inform on PD-relevant pathological changes via an easily assayed biological characteristic, which reliably tracks clinical symptoms. Human dermal (skin) fibroblasts are accessible peripheral cells that constitute a patient-specific system, which potentially recapitulates the PD chronological and epigenetic aging history. Here, we compared primary skin fibroblasts obtained from individuals diagnosed with late-onset sporadic PD, and healthy age-matched controls. These fibroblasts were studied from fundamental viewpoints of growth and morphology, as well as redox, mitochondrial, and autophagic function. It was observed that fibroblasts from PD subjects had higher growth rates, and appeared distinctly different in terms of morphology and spatial organization in culture, compared to control cells. It was also found that the PD fibroblasts exhibited significantly compromised mitochondrial structure and function when assessed via morphological and oxidative phosphorylation assays. Additionally, a striking increase in baseline macroautophagy levels was seen in cells from PD subjects. Exposure of the skin fibroblasts to physiologically relevant stress, specifically ultraviolet irradiation (UVA), further exaggerated the autophagic dysfunction in the PD cells. Moreover, the PD fibroblasts accumulated higher levels of reactive oxygen species (ROS) coupled with lower cell viability upon UVA treatment. In essence, these studies highlight primary skin fibroblasts as a patient-relevant model that captures fundamental PD molecular mechanisms, and supports their potential utility to develop diagnostic and prognostic biomarkers for the disease.

Keywords: Parkinson's disease; UVA irradiation; autophagy; human dermal fibroblasts; mitochondrial function; oxidative stress; sporadic

References

  1. PLoS One. 2010 Sep 27;5(9):e12962 - PubMed
  2. Mol Neurobiol. 2012 Aug;46(1):20-7 - PubMed
  3. Mol Neurodegener. 2009 Jun 05;4:24 - PubMed
  4. J Neurochem. 2010 Jan;112(2):366-76 - PubMed
  5. J Neurosci. 2002 Aug 15;22(16):7006-15 - PubMed
  6. Free Radic Biol Med. 2013 Sep;62:132-44 - PubMed
  7. Parkinsons Dis. 2012;2012:429524 - PubMed
  8. J Biol Chem. 2015 May 29;290(22):13862-74 - PubMed
  9. Biochim Biophys Acta. 2014 Sep;1842(9):1385-94 - PubMed
  10. Neurobiol Learn Mem. 2016 Sep;133:157-170 - PubMed
  11. PLoS One. 2012;7(5):e37467 - PubMed
  12. Biochim Biophys Acta. 2014 Jan;1842(1):7-21 - PubMed
  13. J Clin Invest. 2006 Jul;116(7):1744-54 - PubMed
  14. J Biol Chem. 2013 May 24;288(21):15194-210 - PubMed
  15. Prog Neurobiol. 2011 Jun;94(1):1-19 - PubMed
  16. Am J Pathol. 2007 Jan;170(1):75-86 - PubMed
  17. J Biol Chem. 2011 Sep 23;286(38):33380-9 - PubMed
  18. Adv Neurobiol. 2017;14 :3-30 - PubMed
  19. Curr Biol. 2014 May 19;24(10):R453-62 - PubMed
  20. Cold Spring Harb Perspect Med. 2012 Sep 01;2(9):a009415 - PubMed
  21. Neurobiol Dis. 2006 May;22(2):404-20 - PubMed
  22. Ann Thorac Surg. 2017 Oct;104(4):1298-1304 - PubMed
  23. Int J Mol Med. 2013 Jan;31(1):232-42 - PubMed
  24. Front Genet. 2015 Mar 11;6:78 - PubMed
  25. Histol Histopathol. 1997 Jan;12(1):25-31 - PubMed
  26. J Photochem Photobiol B. 2013 Jun 5;123:1-12 - PubMed
  27. Nat Rev Neurosci. 2015 Jun;16(6):345-57 - PubMed
  28. Brain. 2002 Apr;125(Pt 4):861-70 - PubMed
  29. Cell Death Differ. 2000 Oct;7(10):861-5 - PubMed
  30. Hum Mol Genet. 2012 Nov 1;21(21):4680-702 - PubMed
  31. Brain. 2013 Aug;136(Pt 8):2419-31 - PubMed
  32. Mol Neurobiol. 2016 Oct;53(8):5161-77 - PubMed
  33. J Neurol Sci. 2015 Feb 15;349(1-2):3-9 - PubMed
  34. J Neurosci. 2010 Sep 15;30(37):12535-44 - PubMed
  35. J Cardiothorac Surg. 2017 Jan 26;12 (1):7 - PubMed
  36. Mov Disord. 2010;25 Suppl 1:S49-54 - PubMed
  37. Mov Disord. 2011 May;26(6):1049-55 - PubMed
  38. Brain. 2014 May;137(Pt 5):1481-95 - PubMed
  39. Photochem Photobiol Sci. 2012 Jan;11(1):163-72 - PubMed
  40. Neurobiol Dis. 2013 Sep;57:38-46 - PubMed
  41. Antioxid Redox Signal. 2012 May 1;16(9):869-82 - PubMed
  42. Nat Rev Dis Primers. 2017 Mar 23;3:17013 - PubMed
  43. Front Biosci (Schol Ed). 2014 Jan 01;6:65-74 - PubMed
  44. Cell Mol Life Sci. 2017 Feb;74(3):409-434 - PubMed
  45. Photochem Photobiol. 2010 Nov-Dec;86(6):1307-17 - PubMed
  46. NPJ Parkinsons Dis. 2015;1:null - PubMed
  47. Curr Opin Genet Dev. 2014 Jun;26:16-23 - PubMed
  48. Brain. 2004 Aug;127(Pt 8):1693-705 - PubMed

Publication Types

Grant support