Display options
Share it on

Nat Commun. 2018 Feb 20;9(1):724. doi: 10.1038/s41467-018-03063-9.

Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme.

Nature communications

A Higginson, R J Gray, M King, R J Dance, S D R Williamson, N M H Butler, R Wilson, R Capdessus, C Armstrong, J S Green, S J Hawkes, P Martin, W Q Wei, S R Mirfayzi, X H Yuan, S Kar, M Borghesi, R J Clarke, D Neely, P McKenna

Affiliations

  1. SUPA Department of Physics, University of Strathclyde, Glasgow, G4 0NG, UK.
  2. Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire, OX11 0QX, UK.
  3. Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, UK.
  4. Key Laboratory for Laser Plasmas and CICIFSA, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China.
  5. SUPA Department of Physics, University of Strathclyde, Glasgow, G4 0NG, UK. [email protected].

PMID: 29463872 PMCID: PMC5820283 DOI: 10.1038/s41467-018-03063-9

Abstract

The range of potential applications of compact laser-plasma ion sources motivates the development of new acceleration schemes to increase achievable ion energies and conversion efficiencies. Whilst the evolving nature of laser-plasma interactions can limit the effectiveness of individual acceleration mechanisms, it can also enable the development of hybrid schemes, allowing additional degrees of control on the properties of the resulting ion beam. Here we report on an experimental demonstration of efficient proton acceleration to energies exceeding 94 MeV via a hybrid scheme of radiation pressure-sheath acceleration in an ultrathin foil irradiated by a linearly polarised laser pulse. This occurs via a double-peaked electrostatic field structure, which, at an optimum foil thickness, is significantly enhanced by relativistic transparency and an associated jet of super-thermal electrons. The range of parameters over which this hybrid scenario occurs is discussed and implications for ion acceleration driven by next-generation, multi-petawatt laser facilities are explored.

References

  1. Nat Commun. 2015 Dec 11;6:10170 - PubMed
  2. Phys Rev Lett. 2017 Aug 4;119(5):054801 - PubMed
  3. Rep Prog Phys. 2012 May;75(5):056401 - PubMed
  4. Phys Rev Lett. 2001 Jan 15;86(3):436-9 - PubMed
  5. Phys Rev Lett. 2006 Jul 28;97(4):045001 - PubMed
  6. Nat Commun. 2016 Sep 14;7:12891 - PubMed
  7. Phys Rev Lett. 2012 Mar 16;108(11):115002 - PubMed
  8. Nat Commun. 2016 Feb 10;7:10642 - PubMed
  9. Phys Rev Lett. 2010 Aug 6;105(6):065003 - PubMed
  10. Phys Rev Lett. 2012 Nov 2;109(18):185006 - PubMed
  11. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 May;91(5):053105 - PubMed
  12. Phys Rev Lett. 1992 Nov 23;69(21):3052-3055 - PubMed
  13. Phys Rev Lett. 2003 Sep 19;91(12):125004 - PubMed
  14. Phys Rev Lett. 2016 May 20;116(20):205002 - PubMed
  15. Phys Rev Lett. 2004 Apr 30;92(17):175003 - PubMed

Publication Types