Display options
Share it on

Mol Cytogenet. 2018 Jan 25;11:11. doi: 10.1186/s13039-018-0361-9. eCollection 2018.

Can telomere shortening be the main indicator of non-viable fetus elimination?.

Molecular cytogenetics

Nataliya Huleyuk, Iryna Tkach, Danuta Zastavna, Miroslaw Tyrka

Affiliations

  1. 1Institute of Hereditary Pathology, NAMS of Ukraine, Lysenko Str. 31a, Lviv, 79008 Ukraine.
  2. 2Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Al. Powsta?ców Warszawy 6, 35-959 Rzeszow, Poland.

PMID: 29416566 PMCID: PMC5785879 DOI: 10.1186/s13039-018-0361-9

Abstract

BACKGROUND: Telomeres are transcriptionally inactive genomic areas, which, if shortened, are associated with pathological processes, unsuccessful fertilization, aging, and death. Telomere dysfunction has also been linked to chromosomal rearrangements and genomic instability. The role of telomeres in postnatal life has been extensively studied and discussed both in physiological as well as in pathological processes. However, the role of telomere length in prenatal development is still poorly understood, and mainly concerns the preimplantation stage. The aim of this study was to estimate relative telomere length in spontaneously eliminated human embryos between 5th and 12th week of gestation.

RESULTS: Relative telomere length was measured from total genomic DNA using a real-time polymerase chain reaction approach. In this study, we examined relative telomere length in 80 spontaneously eliminated embryos and in 25 embryos eliminated due to induced abortions. Relative telomere length in spontaneous abortions was significantly lower (

CONCLUSION: Spontaneously lost pregnancies are characterized by shortened telomeres, especially in embryos with aneuploidies. We hypothesize that the shortening of telomeres is involved in the processes leading to spontaneous abortions.

Keywords: Aneuploidy; Euploidy; Relative telomere length; Spontaneous abortions

Conflict of interest statement

The study was approved by the bioethics committee of the Institute of Hereditary Pathology NAMS of Ukraine. Informed consent was obtained from all the participants.Not applicable.The authors declare t

References

  1. Gene. 2014 May 25;542(1):87 - PubMed
  2. Am J Obstet Gynecol. 2016 Jul;215(1):94.e1-8 - PubMed
  3. Nat New Biol. 1972 Oct 18;239(94):197-201 - PubMed
  4. Gene. 2014 Jan 1;533(1):199-207 - PubMed
  5. Mol Hum Reprod. 2010 Sep;16(9):685-94 - PubMed
  6. Pediatr Res. 2002 Sep;52(3):377-81 - PubMed
  7. J Matern Fetal Neonatal Med. 2016;29(8):1283-8 - PubMed
  8. Mol Cell. 2005 Apr 1;18(1):131-8 - PubMed
  9. Reprod Biomed Online. 2014 May;28(5):624-37 - PubMed
  10. Cell Mol Life Sci. 2007 Jan;64(2):139-43 - PubMed
  11. Lancet. 2003 Feb 1;361(9355):393-5 - PubMed
  12. Mech Ageing Dev. 2017 Jun;164:20-26 - PubMed
  13. Biogerontology. 2009 Jun;10(3):279-84 - PubMed
  14. Hum Genet. 1998 Jun;102(6):640-3 - PubMed
  15. Hepatology. 2011 May;53(5):1608-17 - PubMed
  16. J Gerontol A Biol Sci Med Sci. 2011 Apr;66(4):421-9 - PubMed
  17. Am J Obstet Gynecol. 2010 Apr;202(4):381.e1-7 - PubMed
  18. N Engl J Med. 2009 Dec 10;361(24):2353-65 - PubMed
  19. PLoS Genet. 2011 Jul;7(7):e1002182 - PubMed
  20. Genes Dev. 2005 Sep 15;19(18):2100-10 - PubMed
  21. Int J Obes (Lond). 2012 Sep;36(9):1176-9 - PubMed
  22. Lancet. 2005 Aug 20-26;366(9486):662-4 - PubMed
  23. Nat Rev Genet. 2012 Oct;13(10):693-704 - PubMed
  24. Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):E513-8 - PubMed
  25. Nature. 1991 Apr 18;350(6319):569-73 - PubMed
  26. Scand J Public Health. 2008 Sep;36(7):744-52 - PubMed
  27. Hepatology. 2011 May;53(5):1600-7 - PubMed
  28. Ann Nutr Metab. 2015 ;66(4):202-8 - PubMed
  29. Exp Cell Res. 1965 Mar;37:614-36 - PubMed
  30. Cell. 2009 Aug 7;138(3):463-75 - PubMed
  31. Placenta. 2009 Jun;30(6):539-42 - PubMed
  32. Proc Natl Acad Sci U S A. 2004 Dec 7;101(49):17312-5 - PubMed
  33. Aging (Albany NY). 2016 Jan;8(1):3-11 - PubMed
  34. PLoS Genet. 2011 Jun;7(6):e1002161 - PubMed
  35. Eur J Hum Genet. 2001 Nov;9(11):877-9 - PubMed
  36. Aging Cell. 2008 Aug;7(4):451-8 - PubMed
  37. J Theor Biol. 2005 Jul 7;235(1):13-32 - PubMed
  38. Aging Male. 2012 Mar;15(1):54-8 - PubMed
  39. Oncogene. 2002 Jan 21;21(4):532-40 - PubMed
  40. BJOG. 2006 Mar;113(3):318-23 - PubMed
  41. PLoS One. 2014 Mar 12;9(3):e91753 - PubMed
  42. Arch Intern Med. 2008 Jan 28;168(2):154-8 - PubMed
  43. J Cell Biochem. 2006 Apr 1;97(5):904-15 - PubMed
  44. PLoS One. 2012;7(2):e31136 - PubMed
  45. Biochem Biophys Res Commun. 2013 Dec 6;442(1-2):112-5 - PubMed
  46. Am J Obstet Gynecol. 2013 Feb;208(2):134.e1-7 - PubMed
  47. Am J Obstet Gynecol. 2005 Apr;192(4):1256-60; discussion 1260-1 - PubMed
  48. Biochimie. 2008 Jan;90(1):13-23 - PubMed
  49. Cell. 1999 May 14;97(4):503-14 - PubMed
  50. Nucleic Acids Res. 2002 May 15;30(10):e47 - PubMed

Publication Types