Display options
Share it on

Front Cell Neurosci. 2018 Feb 08;11:416. doi: 10.3389/fncel.2017.00416. eCollection 2017.

A Fat-Facets-Dscam1-JNK Pathway Enhances Axonal Growth in Development and after Injury.

Frontiers in cellular neuroscience

Marta Koch, Maya Nicolas, Marlen Zschaetzsch, Natalie de Geest, Annelies Claeys, Jiekun Yan, Matthew J Morgan, Maria-Luise Erfurth, Matthew Holt, Dietmar Schmucker, Bassem A Hassan

Affiliations

  1. Laboratory of Neurogenetics, Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium.
  2. Center for Human Genetics, University of Leuven School of Medicine, KU Leuven, Leuven, Belgium.
  3. Neuronal Wiring Lab, Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium.
  4. Laboratory of Glia Biology, Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium.
  5. Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut du Cerveau et de la Moelle Epinière, Hôpital Pitié-Salpêtrière, UPMC, Sorbonne Universités, Paris, France.

PMID: 29472843 PMCID: PMC5809495 DOI: 10.3389/fncel.2017.00416

Abstract

Injury to the adult central nervous systems (CNS) can result in severe long-term disability because damaged CNS connections fail to regenerate after trauma. Identification of regulators that enhance the intrinsic growth capacity of severed axons is a first step to restore function. Here, we conducted a gain-of-function genetic screen in Drosophila to identify strong inducers of axonal growth after injury. We focus on a novel axis the Down Syndrome Cell Adhesion Molecule (Dscam1), the de-ubiquitinating enzyme Fat Facets (Faf)/Usp9x and the Jun N-Terminal Kinase (JNK) pathway transcription factor Kayak (Kay)/Fos. Genetic and biochemical analyses link these genes in a common signaling pathway whereby Faf stabilizes Dscam1 protein levels, by acting on the 3'-UTR of its mRNA, and Dscam1 acts upstream of the growth-promoting JNK signal. The mammalian homolog of Faf, Usp9x/FAM, shares both the regenerative and Dscam1 stabilizing activities, suggesting a conserved mechanism.

Keywords: Central nervous system; Drosophila melanogaster; axonal growth; axonal injury; post-transcriptional reguylatiopn

References

  1. Neuron. 2004 Mar 25;41(6):891-905 - PubMed
  2. Neuron. 2004 Jul 8;43(1):57-67 - PubMed
  3. Science. 2014 Jun 6;344(6188):1182-6 - PubMed
  4. J Neurobiol. 1990 Sep;21(6):918-37 - PubMed
  5. Neurobiol Dis. 2015 May;77:13-25 - PubMed
  6. Development. 1993 Jun;118(2):401-15 - PubMed
  7. Brain Res Rev. 2007 Feb;53(2):287-311 - PubMed
  8. Neuron. 2006 Jun 15;50(6):869-81 - PubMed
  9. Genetics. 2000 Dec;156(4):1829-36 - PubMed
  10. J Neurosci. 2007 Jun 20;27(25):6723-8 - PubMed
  11. Development. 2008 Mar;135(6):1129-36 - PubMed
  12. Neural Dev. 2007 Aug 15;2:16 - PubMed
  13. Cold Spring Harb Symp Quant Biol. 2007;72:517-25 - PubMed
  14. Neuron. 2015 May 20;86(4):1000-1014 - PubMed
  15. Nat Neurosci. 2012 Mar 04;15(4):551-7 - PubMed
  16. Neuron. 2010 Jun 10;66(5):663-70 - PubMed
  17. Curr Biol. 2012 Apr 10;22(7):590-5 - PubMed
  18. Neuron. 2014 Feb 5;81(3):561-73 - PubMed
  19. Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10738-43 - PubMed
  20. Cell. 2009 Sep 4;138(5):1005-18 - PubMed
  21. FEBS Lett. 2015 Jun 22;589(14 ):1635-43 - PubMed
  22. J Neurosci. 2008 Jun 4;28(23):6010-21 - PubMed
  23. Am J Hum Genet. 2014 Mar 6;94(3):470-8 - PubMed
  24. Science. 2005 Sep 16;309(5742):1874-8 - PubMed
  25. Neuron. 2006 Jul 6;51(1):57-69 - PubMed
  26. Development. 2004 Nov;131(21):5355-66 - PubMed
  27. Biochem Biophys Res Commun. 2009 May 29;383(2):258-62 - PubMed
  28. Elife. 2016 Jun 07;5: - PubMed
  29. Neuron. 2011 Sep 22;71(6):1043-57 - PubMed
  30. Anal Biochem. 1977 Dec;83(2):346-56 - PubMed
  31. Neuron. 2013 Jun 5;78(5):827-38 - PubMed
  32. PLoS Biol. 2011 Aug;9(8):e1001133 - PubMed
  33. Mech Dev. 1997 Apr;63(1):29-38 - PubMed
  34. Proc Natl Acad Sci U S A. 2012 May 8;109(19):7517-22 - PubMed
  35. Nat Neurosci. 2010 Sep;13(9):1075-81 - PubMed
  36. Curr Biol. 2012 Oct 9;22(19):1774-82 - PubMed
  37. Neuron. 2000 Mar;25(3):549-61 - PubMed
  38. Annu Rev Cell Dev Biol. 2012;28:575-97 - PubMed
  39. Neuron. 2007 May 3;54(3):417-27 - PubMed
  40. Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3312-7 - PubMed
  41. Genesis. 2002 Sep-Oct;34(1-2):119-22 - PubMed
  42. J Neurosci. 2001 Jul 1;21(13):4731-9 - PubMed
  43. Nature. 2011 Nov 06;480(7377):372-5 - PubMed
  44. Annu Rev Neurosci. 2011;34:131-52 - PubMed
  45. EMBO J. 2005 Aug 17;24(16):2944-55 - PubMed
  46. Proc Natl Acad Sci U S A. 2013 Mar 5;110(10 ):4039-44 - PubMed
  47. FEBS J. 2005 Jun;272(11):2628-38 - PubMed
  48. Cell. 2000 Jun 9;101(6):671-84 - PubMed
  49. Science. 1995 Dec 15;270(5243):1828-31 - PubMed
  50. Dev Genes Evol. 2000 Dec;210(12):603-10 - PubMed
  51. PLoS One. 2013 Jul 05;8(7):e68287 - PubMed
  52. Science. 2002 Jun 7;296(5574):1860-4 - PubMed
  53. J Neurosci. 2010 May 19;30(20):6825-37 - PubMed
  54. Science. 2009 Oct 9;326(5950):298-301 - PubMed
  55. J Biol Chem. 2013 Jan 18;288(3):1883-95 - PubMed
  56. Neuron. 2012 Jan 26;73(2):268-78 - PubMed
  57. Neuron. 2012 Aug 23;75(4):633-47 - PubMed
  58. Nature. 2001 Jul 26;412(6845):449-52 - PubMed
  59. Front Mol Neurosci. 2015 Jun 16;8:27 - PubMed
  60. Neuron. 2015 Mar 18;85(6):1244-56 - PubMed
  61. Nat Rev Neurosci. 2006 Aug;7(8):603-16 - PubMed
  62. Nature. 2004 Dec 16;432(7019):822 - PubMed

Publication Types