Display options
Share it on

Biomicrofluidics. 2018 Mar 01;12(2):024102. doi: 10.1063/1.5011342. eCollection 2018 Mar.

Microfluidic platform for selective microparticle parking and paired particle isolation in droplet arrays.

Biomicrofluidics

Lynna Chen, Jae Jung Kim, Patrick S Doyle

Affiliations

  1. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  2. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

PMID: 29576834 PMCID: PMC5832466 DOI: 10.1063/1.5011342

Abstract

Immobilizing microscale objects (e.g., cells, spheroids, and microparticles) in arrays for direct observation and analysis is a critical step of many biological and chemical assays; however, existing techniques are often limited in their ability to precisely capture, arrange, isolate, and recollect objects of interest. In this work, we present a microfluidic platform that selectively parks microparticles in hydrodynamic traps based on particle physical characteristics (size, stiffness, and internal structure). We present an accompanying scaling analysis for the particle parking process to enable rational design of microfluidic traps and selection of operating conditions for successful parking of desired particles with specific size and elastic modulus. Our platform also enables parking of encoded particle pairs in defined spatial arrangements and subsequent isolation of these pairs in aqueous droplets, creating distinct microenvironments with no cross-contamination. In addition, we demonstrate the ability to recollect objects of interest (i.e., one particle from each pair) after observation within the channel. This integrated device is ideal for multiplexed assays or microenvironment fabrication for controlled biological studies.

References

  1. Lab Chip. 2017 Sep 12;17 (18):3120-3128 - PubMed
  2. Nat Commun. 2016 Jan 06;7:10220 - PubMed
  3. Lab Chip. 2014 Jul 21;14(14):2480-90 - PubMed
  4. Nat Commun. 2015 Jan 13;6:5940 - PubMed
  5. Lab Chip. 2010 Oct 7;10(19):2605-13 - PubMed
  6. Nat Mater. 2017 Jan;16(1):139-146 - PubMed
  7. Macromol Rapid Commun. 2010 Jan 18;31(2):128-34 - PubMed
  8. Langmuir. 2015 Dec 8;31(48):13165-71 - PubMed
  9. Nat Methods. 2009 Feb;6(2):147-52 - PubMed
  10. Small. 2014 May 14;10(9):1687-703 - PubMed
  11. Anal Chem. 2016 Apr 19;88(8):4259-68 - PubMed
  12. Lab Chip. 2012 Mar 21;12(6):1048-51 - PubMed
  13. Lab Chip. 2010 Apr 7;10(7):857-63 - PubMed
  14. Biomaterials. 1996 Sep;17(17):1647-57 - PubMed
  15. Lab Chip. 2015 Sep 7;15(17):3439-59 - PubMed
  16. Proc Natl Acad Sci U S A. 2007 Apr 3;104(14):5722-6 - PubMed
  17. Soft Matter. 2017 Mar 1;13(9):1920-1928 - PubMed
  18. Lab Chip. 2008 Jul;8(7):1056-61 - PubMed
  19. Lab Chip. 2008 Feb;8(2):198-220 - PubMed
  20. Anal Chem. 2011 Sep 15;83(18):7044-52 - PubMed
  21. Lab Chip. 2007 Jul;7(7):818-28 - PubMed
  22. Nat Methods. 2011 Feb;8(2):171-176 - PubMed
  23. Sci Transl Med. 2013 Apr 3;5(179):179ra47 - PubMed
  24. Lab Chip. 2017 Jun 27;17 (13):2186-2192 - PubMed
  25. Science. 2007 Mar 9;315(5817):1393-6 - PubMed
  26. Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3191-6 - PubMed
  27. Anal Chem. 2014 Dec 2;86(23):11481-8 - PubMed
  28. Lab Chip. 2010 Sep 21;10(18):2443-8 - PubMed
  29. Adv Mater. 2017 Aug;29(31):null - PubMed
  30. Nat Mater. 2006 May;5(5):365-9 - PubMed
  31. Lab Chip. 2008 Sep;8(9):1432-5 - PubMed
  32. Biomacromolecules. 2001 Summer;2(2):430-41 - PubMed
  33. Proc Natl Acad Sci U S A. 2007 Jan 23;104(4):1146-51 - PubMed
  34. Lab Chip. 2010 May 21;10(10):1281-5 - PubMed
  35. Lab Chip. 2016 Oct 18;16(21):4200-4211 - PubMed
  36. Nat Commun. 2017 Sep 7;8(1):469 - PubMed
  37. Lab Chip. 2011 Jan 21;11(2):231-7 - PubMed
  38. Lab Chip. 2006 Apr;6(4):500-7 - PubMed

Publication Types

Grant support