Display options
Share it on

Appl Mater Today. 2018 Mar;10:194-202. doi: 10.1016/j.apmt.2017.12.004. Epub 2017 Dec 14.

Functionalization of PCL-3D Electrospun Nanofibrous Scaffolds for Improved BMP2-Induced Bone Formation.

Applied materials today

Jacob M Miszuk, Tao Xu, Qingqing Yao, Fang Fang, Josh D Childs, Zhongkui Hong, Jianning Tao, Hao Fong, Hongli Sun

Affiliations

  1. Department of Biomedical Engineering, University of South Dakota, BioSNTR, Sioux Falls, SD 57107, USA.
  2. Program of Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA.
  3. Children's Health Research Center at Sanford Research, Sioux Falls, SD 57104, USA.

PMID: 29577064 PMCID: PMC5863927 DOI: 10.1016/j.apmt.2017.12.004

Abstract

Bone morphogenic protein 2 (BMP2) is a key growth factor for bone regeneration, possessing FDA approval for orthopedic applications. BMP2 is often required in supratherapeutic doses clinically, yielding adverse side effects and substantial treatment costs. Considering the crucial role of materials for BMPs delivery and cell osteogenic differentiation, we devote to engineering an innovative bone-matrix mimicking niche to improve low dose of BMP2-induced bone formation. Our previous work describes a novel technique, named thermally induced nanofiber self-agglomeration (TISA), for generating 3D electrospun nanofibrous (NF) polycaprolactone (PCL) scaffolds. TISA process could readily blend PCL with PLA, leading to increased osteogenic capabilities

Keywords: 3D electrospun nanofibrous scaffold; Bone Regeneration; Hydroxyapatite functionalization; Osteogenic differentiation; Phenamil

References

  1. J Biomed Mater Res A. 2014 Dec;102(12):4234-43 - PubMed
  2. J Biomed Mater Res A. 2010 May;93(2):753-62 - PubMed
  3. Adv Drug Deliv Rev. 2015 Nov 1;94:41-52 - PubMed
  4. J Biotechnol. 2015 Jun 20;204:53-62 - PubMed
  5. J Biomed Nanotechnol. 2014 Oct;10(10):3124-40 - PubMed
  6. Mater Today (Kidlington). 2013 Jun 1;16(6):229-241 - PubMed
  7. J Clin Invest. 2008 Feb;118(2):421-8 - PubMed
  8. Mol Cell Biol. 2009 Jul;29(14):3905-14 - PubMed
  9. Nanotechnology. 2011 Apr 29;22(17):175707 - PubMed
  10. Biomater Res. 2016 Jun 02;20:14 - PubMed
  11. Exp Gerontol. 2015 Apr;64:62-9 - PubMed
  12. Materials (Basel). 2015 Apr 15;8(4):1778-1816 - PubMed
  13. Biophys J. 2007 Aug 1;93(3):750-9 - PubMed
  14. Mater Sci Eng C Mater Biol Appl. 2014 Jan 1;34:437-45 - PubMed
  15. J Mater Chem B. 2017;5(26):5196-5205 - PubMed
  16. Biomaterials. 2009 Apr;30(12):2252-8 - PubMed
  17. Tissue Eng Part A. 2017 Mar;23 (5-6):195-207 - PubMed
  18. J Bone Joint Surg Am. 2001;83-A Suppl 1(Pt 2):S105-15 - PubMed
  19. Biomaterials. 2006 May;27(15):2907-15 - PubMed
  20. Mater Sci Eng C Mater Biol Appl. 2017 Feb 1;71:901-908 - PubMed
  21. Biomaterials. 2014 Jan;35(4):1176-84 - PubMed
  22. Int J Nanomedicine. 2016 Aug 25;11:4157-71 - PubMed
  23. PLoS One. 2014 Aug 01;9(8):e104061 - PubMed
  24. Biotechnol Lett. 2009 Dec;31(12):1825-35 - PubMed
  25. Biomaterials. 2017 Jan;115:115-127 - PubMed
  26. Adv Healthc Mater. 2015 Oct 28;4(15):2238-46 - PubMed
  27. Tissue Eng Part A. 2015 Jul;21(13-14):2053-65 - PubMed
  28. J Cell Biol. 1994 Dec;127(6 Pt 1):1755-66 - PubMed
  29. Adv Drug Deliv Rev. 2008 Jan 14;60(2):184-98 - PubMed
  30. Biomaterials. 2010 Dec;31(35):9293-300 - PubMed
  31. Biomed Mater Eng. 2014;24(1 Suppl):63-73 - PubMed
  32. Biomed Res Int. 2015;2015:302820 - PubMed
  33. Injury. 2011 Jun;42(6):609-13 - PubMed
  34. J Tissue Eng Regen Med. 2014 Sep;8(9):728-36 - PubMed

Publication Types

Grant support