Display options
Share it on

Front Neurosci. 2018 May 15;12:88. doi: 10.3389/fnins.2018.00088. eCollection 2018.

The Dynamics of Prosthetically Elicited Vestibulo-Ocular Reflex Function Across Frequency and Context in the Rhesus Monkey.

Frontiers in neuroscience

James O Phillips, Leo Ling, Amy L Nowack, Christopher M Phillips, Kaibao Nie, Jay T Rubinstein

Affiliations

  1. Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States.
  2. Washington National Primate Research Center, University of Washington, Seattle, WA, United States.
  3. Virginia Merril Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States.
  4. Epidemiology, University of Washington, Seattle, WA, United States.
  5. Bioengineering, University of Washington, Seattle, WA, United States.

PMID: 29867306 PMCID: PMC5962652 DOI: 10.3389/fnins.2018.00088

Abstract

Electrical vestibular neurostimulation may be a viable tool for modulating vestibular afferent input to restore vestibular function following injury or disease. To do this, such stimulators must provide afferent input that can be readily interpreted by the central nervous system to accurately represent head motion to drive reflexive behavior. Since vestibular afferents have different galvanic sensitivity, and different natural sensitivities to head rotational velocity and acceleration, and electrical stimulation produces aphysiological synchronous activation of multiple afferents, it is difficult to assign a priori an appropriate transformation between head velocity and acceleration and the properties of the electrical stimulus used to drive vestibular reflex function, i.e., biphasic pulse rate or pulse current amplitude. In order to empirically explore the nature of the transformation between vestibular prosthetic stimulation and vestibular reflex behavior, in Rhesus macaque monkeys we parametrically varied the pulse rate and current amplitude of constant rate and current amplitude pulse trains, and the modulation frequency of sinusoidally modulated pulse trains that were pulse frequency modulated (FM) or current amplitude modulated (AM). In addition, we examined the effects of differential eye position and head position on the observed eye movement responses. We conclude that there is a strong and idiosyncratic, from canal to canal, effect of modulation frequency on the observed eye velocities that are elicited by stimulation. In addition, there is a strong effect of initial eye position and initial head position on the observed responses. These are superimposed on the relationships between pulse frequency or current amplitude and eye velocity that have been shown previously.

Keywords: dynamics; eye position; head position; prosthesis; vestibular; vestibulo-ocular reflex

References

  1. IEEE Trans Neural Syst Rehabil Eng. 2011 Feb;19(1):84-94 - PubMed
  2. J Neurophysiol. 1976 Sep;39(5):985-95 - PubMed
  3. Anat Rec (Hoboken). 2012 Nov;295(11):2010-29 - PubMed
  4. Conf Proc IEEE Eng Med Biol Soc. 2005;7:7380-5 - PubMed
  5. Brain Res. 1977 Feb 25;122(3):545-50 - PubMed
  6. Ann Otol Rhinol Laryngol. 1964 Mar;73:153-69 - PubMed
  7. J Neurophysiol. 1971 Jul;34(4):676-84 - PubMed
  8. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:6128-31 - PubMed
  9. J Neurophysiol. 2010 Feb;103(2):1066-79 - PubMed
  10. IEEE Trans Biomed Eng. 2002 Feb;49(2):175-81 - PubMed
  11. Exp Brain Res. 2011 May;210(3-4):595-606 - PubMed
  12. IEEE Trans Biomed Eng. 2008 Nov;55(11):2608-19 - PubMed
  13. J Neurophysiol. 2006 Sep;96(3):1061-74 - PubMed
  14. Exp Brain Res. 1977 Dec 19;30(4):587-600 - PubMed
  15. Front Neurol. 2014 Apr 29;5:66 - PubMed
  16. Brain Res. 1982 Dec 2;252(1):156-60 - PubMed
  17. Exp Brain Res. 2016 Nov;234(11):3245-3257 - PubMed
  18. J Neurophysiol. 1981 Mar;45(3):376-96 - PubMed
  19. J Assoc Res Otolaryngol. 2004 Jun;5(2):126-43 - PubMed
  20. Hear Res. 2011 Nov;281(1-2):74-83 - PubMed
  21. IEEE Trans Biomed Eng. 2007 Jun;54(6 Pt 1):1005-15 - PubMed
  22. J Assoc Res Otolaryngol. 2013 Dec;14(6):863-77 - PubMed
  23. Ann Biomed Eng. 2000 May;28(5):572-81 - PubMed
  24. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:3537-41 - PubMed
  25. J Neurosci. 2007 Jan 24;27(4):771-81 - PubMed
  26. J Neurophysiol. 2015 Jun 1;113(10):3866-92 - PubMed
  27. J Neurophysiol. 2016 Dec 1;116(6):2777-2788 - PubMed
  28. J Neurophysiol. 1995 Mar;73(3):1270-81 - PubMed
  29. Brain Res. 1976 Aug 6;112(1):61-76 - PubMed
  30. J Neurophysiol. 1971 Jul;34(4):661-75 - PubMed
  31. J Neurophysiol. 1984 Jun;51(6):1236-56 - PubMed
  32. J Neurophysiol. 1988 Jul;60(1):182-203 - PubMed
  33. Front Syst Neurosci. 2015 Jan 20;8:255 - PubMed
  34. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:3519-23 - PubMed
  35. Otol Neurotol. 2014 Jan;35(1):136-47 - PubMed
  36. J Neurophysiol. 1990 Apr;63(4):781-90 - PubMed
  37. J Neurophysiol. 2005 Apr;93(4):2028-38 - PubMed
  38. Otol Neurotol. 2012 Jul;33(5):789-96 - PubMed
  39. Exp Brain Res. 1982;47(2):286-94 - PubMed
  40. J Assoc Res Otolaryngol. 2010 Sep;11(3):367-81 - PubMed
  41. Otol Neurotol. 2011 Jan;32(1):88-97 - PubMed
  42. J Neurosci. 1994 Mar;14(3 Pt 1):1290-308 - PubMed
  43. Exp Brain Res. 2013 Aug;229(2):181-95 - PubMed
  44. J Neurophysiol. 1983 Mar;49(3):639-48 - PubMed
  45. J Neurol. 2016 Apr;263 Suppl 1:S30-5 - PubMed
  46. J Assoc Res Otolaryngol. 2013 Apr;14(2):233-48 - PubMed
  47. Ann Otol Rhinol Laryngol. 2011 Mar;120(3):143-9 - PubMed
  48. IEEE Trans Neural Syst Rehabil Eng. 2011 Oct;19(5):588-98 - PubMed
  49. IEEE Trans Biomed Eng. 2007 Jun;54(6 Pt 1):1016-30 - PubMed
  50. J Neurosci. 1994 Oct;14(10):6071-83 - PubMed
  51. J Assoc Res Otolaryngol. 2013 Jun;14(3):331-40 - PubMed
  52. Exp Neurol. 1964 Nov;10:393-405 - PubMed
  53. Ann Otol Rhinol Laryngol. 2007 May;116(5):369-74 - PubMed
  54. IEEE Trans Biomed Eng. 2013 Jun;60(6):1685-92 - PubMed
  55. Hear Res. 2015 Apr;322:200-11 - PubMed
  56. Am J Physiol. 1963 Feb;204:347-51 - PubMed
  57. J Neurophysiol. 1980 Apr;43(4):986-1025 - PubMed
  58. Hear Res. 2011 Jul;277(1-2):204-10 - PubMed
  59. J Neurophysiol. 1971 Jul;34(4):635-60 - PubMed
  60. J Vestib Res. 2002-2003;12(2-3):87-94 - PubMed
  61. J Assoc Res Otolaryngol. 2016 Feb;17 (1):19-35 - PubMed
  62. Vision Res. 1980;20(6):535-8 - PubMed
  63. J Neurophysiol. 1988 Jul;60(1):167-81 - PubMed
  64. Exp Brain Res. 2000 Feb;130(3):277-97 - PubMed
  65. IEEE Trans Biomed Eng. 2006 Nov;53(11):2362-72 - PubMed
  66. Ann Otol Rhinol Laryngol. 2011 Feb;120(2):81-7 - PubMed

Publication Types

Grant support