Display options
Share it on

Cancer Metab. 2018 Jun 28;6:7. doi: 10.1186/s40170-018-0181-8. eCollection 2018.

A precision therapeutic strategy for hexokinase 1-null, hexokinase 2-positive cancers.

Cancer & metabolism

Shili Xu, Arthur Catapang, Daniel Braas, Linsey Stiles, Hanna M Doh, Jason T Lee, Thomas G Graeber, Robert Damoiseaux, Orian Shirihai, Harvey R Herschman

Affiliations

  1. 1Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA.
  2. 3UCLA Metabolomics Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA.
  3. 6Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA.
  4. 4Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA.
  5. 5Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA.
  6. 7California NanoSystems Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA.
  7. 2Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA.
  8. 8Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA.

PMID: 29988332 PMCID: PMC6022704 DOI: 10.1186/s40170-018-0181-8

Abstract

BACKGROUND: Precision medicine therapies require identification of unique molecular cancer characteristics. Hexokinase (HK) activity has been proposed as a therapeutic target; however, different hexokinase isoforms have not been well characterized as alternative targets. While HK2 is highly expressed in the majority of cancers, cancer subtypes with differential HK1 and HK2 expression have not been characterized for their sensitivities to HK2 silencing.

METHODS: HK1 and HK2 expression in the Cancer Cell Line Encyclopedia dataset was analyzed. A doxycycline-inducible shRNA silencing system was used to examine the effect of HK2 knockdown in cultured cells and in xenograft models of HK1

RESULTS: Most tumors express both HK1 and HK2, and subsets of cancers from a wide variety of tissues of origin express only HK2. Unlike HK1

CONCLUSIONS: The HK1

Keywords: Cancer; Diphenyleneiodonium; Fatty acid oxidation; Glycolysis; Hexokinase 2; Liver cancer; Mitochondria complex-I; Oxidative phosphorylation; Perhexiline; Precision medicine; Synthetic lethality; Warburg effect

Conflict of interest statement

Not applicable.The authors declare that they have no competing interests.Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. Oncotarget. 2016 Jun 1;8(34):56081-56094 - PubMed
  2. Science. 2016 Jun 3;352(6290):1221-5 - PubMed
  3. Nature. 2012 Nov 15;491(7424):364-73 - PubMed
  4. Nat Commun. 2018 Jan 31;9(1):446 - PubMed
  5. Biol Pharm Bull. 2007 Mar;30(3):447-50 - PubMed
  6. Nat Genet. 2015 May;47(5):505-511 - PubMed
  7. Cell. 2017 Feb 9;168(4):657-669 - PubMed
  8. Mol Cancer Ther. 2007 Nov;6(11):3049-58 - PubMed
  9. Cancer Cell. 2013 Aug 12;24(2):213-228 - PubMed
  10. Cancer Res. 2010 Dec 15;70(24):10202-12 - PubMed
  11. Blood. 2015 Apr 30;125(18):2806-14 - PubMed
  12. Am J Physiol Gastrointest Liver Physiol. 2001 May;280(5):G1005-12 - PubMed
  13. Cancer Res. 2014 Jun 1;74(11):2913-21 - PubMed
  14. Nat Cell Biol. 2016 May;18(5):561-71 - PubMed
  15. Biochem Soc Trans. 1979 Feb;7(1):103-6 - PubMed
  16. J Exp Biol. 2003 Jun;206(Pt 12):2049-57 - PubMed
  17. Nat Chem Biol. 2015 Jan;11(1):9-15 - PubMed
  18. Cancer Discov. 2017 Sep;7(9):963-972 - PubMed
  19. Adv Enzyme Regul. 1984;22:27-55 - PubMed
  20. Nat Rev Cancer. 2013 Apr;13(4):227-32 - PubMed
  21. J Exp Med. 2011 Feb 14;208(2):313-26 - PubMed
  22. Biochem J. 2011 Apr 15;435(2):297-312 - PubMed
  23. J Nucl Med. 1980 Jul;21(7):670-5 - PubMed
  24. Cell Rep. 2016 Mar 8;14(9):2154-2165 - PubMed
  25. Biochim Biophys Acta. 2008 May;1777(5):397-403 - PubMed
  26. ACS Med Chem Lett. 2015 Dec 28;7(3):217-22 - PubMed
  27. J Biol Chem. 1973 Sep 10;248(17):6050-6 - PubMed
  28. Mol Cell. 2013 Feb 7;49(3):379-87 - PubMed
  29. Hepatology. 2006 May;43(5):989-1000 - PubMed
  30. J Lipid Res. 2009 Apr;50 Suppl:S138-43 - PubMed
  31. Cell. 2012 Apr 13;149(2):274-93 - PubMed
  32. J Biol Chem. 2009 Jan 16;284(3):1620-7 - PubMed
  33. Biochem J. 1986 Jul 1;237(1):111-6 - PubMed
  34. Cell Rep. 2014 Sep 11;8(5):1461-74 - PubMed
  35. Nat Commun. 2013;4:2508 - PubMed
  36. Mol Cell. 2013 Feb 7;49(3):388-98 - PubMed
  37. Front Med. 2018 Apr;12(2):229-235 - PubMed
  38. FASEB J. 1991 Jan;5(1):98-103 - PubMed
  39. Nature. 2012 Mar 28;483(7391):603-7 - PubMed
  40. Elife. 2014 May 13;3:e02242 - PubMed
  41. Blood. 2015 Oct 15;126(16):1925-9 - PubMed
  42. J Neurochem. 1996 Mar;66(3):1174-81 - PubMed
  43. Free Radic Biol Med. 2013 Apr;57:162-75 - PubMed
  44. Nature. 2015 Jul 30;523(7562):617-20 - PubMed
  45. N Engl J Med. 2018 Feb 22;378(8):731-739 - PubMed
  46. Annu Rev Med. 2002;53:89-112 - PubMed
  47. Biochim Biophys Acta. 2008 Oct;1778(10):1978-2021 - PubMed

Publication Types

Grant support