Display options
Share it on

Evid Based Complement Alternat Med. 2018 Jun 25;2018:6821387. doi: 10.1155/2018/6821387. eCollection 2018.

Effect and Mechanism of ShiZhiFang on Uric Acid Metabolism in Hyperuricemic Rats.

Evidence-based complementary and alternative medicine : eCAM

Yansheng Wu, Yixing Wang, Jiaoying Ou, Qiang Wan, Liqiang Shi, Yingqiao Li, Fei He, Huiling Wang, Liqun He, Jiandong Gao

Affiliations

  1. Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine; TCM Institute of Kidney Disease of Shanghai University of Traditional Chinese Medicine; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine (14DZ2273200), No. 528 Road Zhangheng, Shanghai 201203, China.
  2. Department of Internal Medicine of Traditional Chinese Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Road Jimo, Pudong New District, Shanghai 200120, China.
  3. Department of Internal Medicine, Shanghai TCM-Integrated Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, No. 184 Road Baoding, Shanghai 200082, China.
  4. Department of Nephrology, Traditional Chinese Medicine Hospital of Langfang City, No. 108 Road North Yinhe, Langfang 065000, China.
  5. Department of Nephrology, Xiamen Hospital of Traditional Chinese Medicine, No. 1739 Road Xianyue, Xiamen 361009, China.

PMID: 30046344 PMCID: PMC6036841 DOI: 10.1155/2018/6821387

Abstract

OBJECTIVE: To explore the effect and mechanism of ShiZhiFang on uric acid metabolism.

METHODS: 40 rats were divided into normal group, model group, ShiZhiFang group, and benzbromarone group. The hyperuricemic rat model was induced by yeast gavage at 15 g/kg and potassium oxonate intraperitoneal injection at 600 mg/kg for two weeks. During the next two weeks, ShiZhiFang group rats were given ShiZhiFang by gavage, and benzbromarone group rats were given benzbromarone by gavage. The serum uric acid, creatinine, blood urea nitrogen, XOD activity, urinary uric acid, urinary

RESULTS: The hyperuricemic model was established successfully and did not show the increase of serum creatinine and blood urea nitrogen. Compared with the model group, the serum uric acid, serum XOD activity, and urinary

CONCLUSION: The model is suitable for the study of primary hyperuricemia. The mechanisms of ShiZhiFang on uric acid metabolism in hyperuricemic rats may be involved in reducing the activity of serum XOD and promoting the transcription and expression of rOAT1 and rOAT3 in the kidney.

References

  1. Sci Rep. 2015 Jul 16;5:12144 - PubMed
  2. Eur J Pharmacol. 2015 Jan 15;747:59-70 - PubMed
  3. Pediatr Nephrol. 1992 Nov;6(6):565-71 - PubMed
  4. Semin Nephrol. 2011 Sep;31(5):447-52 - PubMed
  5. Cell Physiol Biochem. 2003;13(5):249-56 - PubMed
  6. J Ethnopharmacol. 2010 Apr 21;128(3):685-92 - PubMed
  7. Clin Kidney J. 2016 Jun;9(3):444-53 - PubMed
  8. Kidney Int. 2012 Dec;82(12):1297-303 - PubMed
  9. Int J Cardiol. 2016 Jun 15;213:8-14 - PubMed
  10. Sci Rep. 2014 Sep 09;4:6307 - PubMed
  11. Zhongguo Zhong Yao Za Zhi. 2015 Nov;40(22):4346-50 - PubMed
  12. Evid Based Complement Alternat Med. 2017;2017:7674240 - PubMed
  13. Am J Chin Med. 2018;46(3):585-599 - PubMed
  14. Chin J Nat Med. 2016 Jul;14(7):499-507 - PubMed
  15. Eur J Pharm Sci. 2016 Jan 1;81:119-28 - PubMed
  16. Mol Pharmacol. 2011 May;79(5):795-805 - PubMed
  17. J Pharmacol Exp Ther. 2016 Oct;359(1):215-29 - PubMed
  18. Cell Physiol Biochem. 2015;37(4):1491-502 - PubMed
  19. J Biol Chem. 2016 Sep 9;291(37):19474-86 - PubMed
  20. Curr Pharm Des. 2013;19(13):2432-8 - PubMed
  21. Clin Exp Nephrol. 2013 Aug;17(4):541-8 - PubMed
  22. Am J Physiol Renal Physiol. 2013 Mar 1;304(5):F471-80 - PubMed
  23. J Pharm Sci. 2013 Sep;102(9):3302-8 - PubMed
  24. Front Pharmacol. 2018 Jan 15;8:996 - PubMed
  25. Metabolism. 2016 Sep;65(9):1326-41 - PubMed
  26. Cell Physiol Biochem. 2014;34(5):1675-85 - PubMed
  27. Anat Sci Int. 2017 Mar;92(2):200-206 - PubMed
  28. J Ethnopharmacol. 2015 Feb 23;161:163-9 - PubMed
  29. Cardiorenal Med. 2013 Oct;3(3):208-220 - PubMed
  30. Am J Kidney Dis. 2007 Aug;50(2):239-47 - PubMed
  31. Physiol Genomics. 2008 Apr 22;33(2):180-92 - PubMed
  32. JAMA Ophthalmol. 2015 Feb;133(2):140-5 - PubMed
  33. Oncotarget. 2017 Aug 10;8(59):100852-100862 - PubMed
  34. Rheumatol Int. 2015 Sep;35(9):1519-24 - PubMed
  35. Naunyn Schmiedebergs Arch Pharmacol. 2016 Aug;389(8):831-8 - PubMed
  36. Pharmacol Ther. 2012 Oct;136(1):106-30 - PubMed
  37. J Ethnopharmacol. 2015 Apr 2;163:278-89 - PubMed
  38. Nihon Rinsho. 2008 Apr;66(4):659-66 - PubMed
  39. Int J Mol Med. 2015 May;35(5):1347-54 - PubMed
  40. Clin Exp Nephrol. 2017 Apr;21(2):182-192 - PubMed
  41. Int J Cardiol. 2016 Jun 15;213:4-7 - PubMed
  42. Physiol Rev. 2015 Jan;95(1):83-123 - PubMed
  43. Nutr Metab Cardiovasc Dis. 2016 Jul;26(7):575-580 - PubMed
  44. Exp Ther Med. 2014 Dec;8(6):1683-1688 - PubMed
  45. J Biol Chem. 2007 Aug 17;282(33):23841-53 - PubMed
  46. Int J Cardiol. 2016 Jun 15;213:23-7 - PubMed

Publication Types