Display options
Share it on

Nat Commun. 2018 Jul 20;9(1):2869. doi: 10.1038/s41467-018-05358-3.

Spin inversion in graphene spin valves by gate-tunable magnetic proximity effect at one-dimensional contacts.

Nature communications

Jinsong Xu, Simranjeet Singh, Jyoti Katoch, Guanzhong Wu, Tiancong Zhu, Igor Žutić, Roland K Kawakami

Affiliations

  1. Department of Physics, The Ohio State University, Columbus, OH, 43210, USA.
  2. Department of Physics, University at Buffalo, State University of New York, Buffalo, New York, 14260, USA.
  3. Department of Physics, The Ohio State University, Columbus, OH, 43210, USA. [email protected].

PMID: 30030444 PMCID: PMC6054683 DOI: 10.1038/s41467-018-05358-3

Abstract

Graphene has remarkable opportunities for spintronics due to its high mobility and long spin diffusion length, especially when encapsulated in hexagonal boron nitride (h-BN). Here, we demonstrate gate-tunable spin transport in such encapsulated graphene-based spin valves with one-dimensional (1D) ferromagnetic edge contacts. An electrostatic backgate tunes the Fermi level of graphene to probe different energy levels of the spin-polarized density of states (DOS) of the 1D ferromagnetic contact, which interact through a magnetic proximity effect (MPE) that induces ferromagnetism in graphene. In contrast to conventional spin valves, where switching between high- and low-resistance configuration requires magnetization reversal by an applied magnetic field or a high-density spin-polarized current, we provide an alternative path with the gate-controlled spin inversion in graphene.

References

  1. Phys Rev Lett. 2008 Jul 11;101(2):026803 - PubMed
  2. Phys Rev Lett. 2011 Jul 22;107(4):047206 - PubMed
  3. Nat Commun. 2016 May 09;7:11444 - PubMed
  4. Nat Nanotechnol. 2011 Mar;6(3):179-84 - PubMed
  5. Nat Nanotechnol. 2014 Oct;9(10):794-807 - PubMed
  6. Nano Lett. 2015 Apr 8;15(4):2396-401 - PubMed
  7. Nano Lett. 2014 May 14;14(5):2952-6 - PubMed
  8. Nature. 2002 Apr 18;416(6882):713-6 - PubMed
  9. Sci Rep. 2016 Feb 17;6:21168 - PubMed
  10. Nano Lett. 2016 Aug 10;16(8):4825-30 - PubMed
  11. Nat Mater. 2016 Jul;15(7):711-6 - PubMed
  12. Nat Commun. 2017 Jul 05;8:16093 - PubMed
  13. Nat Commun. 2016 Nov 11;7:13372 - PubMed
  14. Phys Rev Lett. 1985 Oct 21;55(17):1790-1793 - PubMed
  15. Science. 2013 Nov 1;342(6158):614-7 - PubMed
  16. Phys Rev Lett. 2017 May 5;118(18):187201 - PubMed
  17. Nano Lett. 2016 Jun 8;16(6):3533-9 - PubMed
  18. Science. 2009 Sep 18;325(5947):1515-8 - PubMed
  19. Phys Rev Lett. 2015 Jan 9;114(1):016603 - PubMed
  20. Nat Commun. 2017 Aug 15;8(1):248 - PubMed

Publication Types

Grant support