Display options
Share it on

EJNMMI Res. 2018 Jul 20;8(1):63. doi: 10.1186/s13550-018-0421-5.

Reproducible quantification of cardiac sympathetic innervation using graphical modeling of carbon-11-meta-hydroxyephedrine kinetics with dynamic PET-CT imaging.

EJNMMI research

Tong Wang, Kai Yi Wu, Robert C Miner, Jennifer M Renaud, Rob S B Beanlands, Robert A deKemp

Affiliations

  1. National Cardiac PET Centre, University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada.
  2. Department of Physiology, University of Toronto, 1 Kings College Circle, Toronto, ON, M5S 1A8, Canada.
  3. National Cardiac PET Centre, University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada. [email protected].

PMID: 30030665 PMCID: PMC6054601 DOI: 10.1186/s13550-018-0421-5

Abstract

BACKGROUND: Graphical methods of radiotracer kinetic modeling in PET are ideal for parametric imaging and data quality assurance but can suffer from noise bias. This study compared the Logan and Multilinear Analysis-1 (MA1) graphical models to the standard one-tissue-compartment (1TC) model, including correction for partial-volume effects, in dynamic PET-CT studies of myocardial sympathetic innervation in the left ventricle (LV) using [

METHODS: Test and retest [

RESULTS: A modeling start-time of t* = 5 min gave the best fit for both Logan and MA1 (R

CONCLUSIONS: Logan and MA1 models exhibited similar agreement and variability compared to the 1TC for modeling of [

Keywords: HED; Logan; MA1; One tissue compartment; Sympathetic nervous system

References

  1. Nucl Med Biol. 2015 Nov;42(11):858-63 - PubMed
  2. J Cereb Blood Flow Metab. 1990 Sep;10(5):740-7 - PubMed
  3. J Cereb Blood Flow Metab. 2007 Sep;27(9):1533-9 - PubMed
  4. J Cereb Blood Flow Metab. 1985 Dec;5(4):584-90 - PubMed
  5. EJNMMI Res. 2014 Dec;4(1):52 - PubMed
  6. J Nucl Med. 2015 Sep;56(9):1429-33 - PubMed
  7. Q J Nucl Med Mol Imaging. 2016 Dec;60(4):362-82 - PubMed
  8. Lancet. 1986 Feb 8;1(8476):307-10 - PubMed
  9. J Nucl Med. 2007 Jul;48(7):1207-15 - PubMed
  10. Circulation. 2014 Sep 9;130(11):892-901 - PubMed
  11. J Nucl Med. 2014 Sep;55(9):1539-44 - PubMed
  12. J Chiropr Med. 2016 Jun;15(2):155-63 - PubMed
  13. J Nucl Cardiol. 2010 Aug;17(4):600-16 - PubMed
  14. J Nucl Med. 1990 Aug;31(8):1328-34 - PubMed
  15. J Nucl Med. 2015 Nov;56(11):1706-11 - PubMed
  16. J Am Coll Cardiol. 1993 Aug;22(2):368-75 - PubMed
  17. J Nucl Med. 1991 Nov;32(11):2169-75 - PubMed
  18. Curr Cardiol Rep. 2017 Apr;19(4):33 - PubMed
  19. Psychol Bull. 1979 Mar;86(2):420-8 - PubMed
  20. J Am Coll Cardiol. 2007 Jan 30;49(4):450-8 - PubMed
  21. J Nucl Med. 1992 Jun;33(6):1243-50 - PubMed
  22. Nucl Med Biol. 2014 Nov-Dec;41(10):793-800 - PubMed
  23. J Cereb Blood Flow Metab. 2013 Jul;33(7):1032-40 - PubMed
  24. J Cereb Blood Flow Metab. 2002 Oct;22(10):1271-81 - PubMed
  25. Clin Nucl Med. 2015 Feb;40(2):e96-e103 - PubMed
  26. Q J Nucl Med. 2002 Mar;46(1):70-85 - PubMed
  27. Radiology. 2002 Nov;225(2):575-81 - PubMed
  28. J Nucl Med. 2007 Oct;48(10):1733-40 - PubMed
  29. J Cereb Blood Flow Metab. 1996 Sep;16(5):834-40 - PubMed
  30. Ann Nucl Med. 2014 Apr;28(3):187-95 - PubMed
  31. Eur Heart J Cardiovasc Imaging. 2015 Jul;16(7):788-98 - PubMed

Publication Types

Grant support