Display options
Share it on

Atmos Chem Phys. 2016 Sep 23;16(18):11915-11935. doi: 10.5194/acp-16-11915-2016.

Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network.

Atmospheric chemistry and physics

Francesca Sprovieri, Nicola Pirrone, Mariantonia Bencardino, Francesco D'Amore, Francesco Carbone, Sergio Cinnirella, Valentino Mannarino, Matthew Landis, Ralf Ebinghaus, Andreas Weigelt, Ernst-Günther Brunke, Casper Labuschagne, Lynwill Martin, John Munthe, Ingvar Wängberg, Paulo Artaxo, Fernando Morais, Henrique de Melo Jorge Barbosa, Joel Brito, Warren Cairns, Carlo Barbante, María Del Carmen Diéguez, Patricia Elizabeth Garcia, Aurélien Dommergue, Helene Angot, Olivier Magand, Henrik Skov, Milena Horvat, Jože Kotnik, Katie Alana Read, Luis Mendes Neves, Bernd Manfred Gawlik, Fabrizio Sena, Nikolay Mashyanov, Vladimir Obolkin, Dennis Wip, Xin Bin Feng, Hui Zhang, Xuewu Fu, Ramesh Ramachandran, Daniel Cossa, Joël Knoery, Nicolas Marusczak, Michelle Nerentorp, Claus Norstrom

Affiliations

  1. CNR Institute of Atmospheric Pollution Research, Rende, Italy.
  2. CNR Institute of Atmospheric Pollution Research, Rome, Italy.
  3. Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA.
  4. Helmholtz-Zentrum, Geesthacht, Germany.
  5. Cape Point GAW Station, Climate and Environment Research & Monitoring, South African Weather Service, Stellenbosch, South Africa.
  6. IVL, Swedish Environmental Research Inst. Ltd., Göteborg, Sweden.
  7. University of Sao Paulo, Sao Paulo, Brazil.
  8. University Ca' Foscari of Venice, Venice, Italy.
  9. CNR Institute for the Dynamics of Environmental Processes, Venice, Italy.
  10. INIBIOMA-CONICET-UNComa, Bariloche, Argentina.
  11. Laboratoire de Glaciologie et Géophysique de l'Environnement, University Grenoble Alpes, Grenoble, France.
  12. Laboratoire de Glaciologie et Géophysique de l'Environnement, CNRS, Grenoble, France.
  13. Department of Environmental Science, Aarhus University, Aarhus, Denmark.
  14. Jožef Stefan Institute, Lubliana, Slovenia.
  15. NCAS, University of York, York, UK.
  16. Cape Verde Observatory, INMG - Sao Vicente, Cabo Verde.
  17. Joint Research Centre, Ispra, Italy.
  18. St. Petersburg State University, St. Petersburg, Russia.
  19. Limnological Institute SB RAS, Irkutsk, Russia.
  20. Department of Physics, University of Suriname, Paramaribo, Suriname.
  21. Institute of Geochemistry, State Key Laboratory of Environmental Geochemistry, Chinese Academy of Sciences, Guiyang, China.
  22. Institute for Ocean Management, Anna University, Chennai, India.
  23. LER/PAC, Ifremer,Centre Méditerranée, La Seyne-sur-Mer, France.
  24. LBCM, Ifremer, Centre Atlantique, Nantes, France.
  25. Chalmers University of Technology, Gothenburg, Sweden.

PMID: 30245704 PMCID: PMC6145827 DOI: 10.5194/acp-16-11915-2016

Abstract

Long-term monitoring of data of ambient mercury (Hg) on a global scale to assess its emission, transport, atmospheric chemistry, and deposition processes is vital to understanding the impact of Hg pollution on the environment. The Global Mercury Observation System (GMOS) project was funded by the European Commission (http://www.gmos.eu) and started in November 2010 with the overall goal to develop a coordinated global observing system to monitor Hg on a global scale, including a large network of ground-based monitoring stations, ad hoc periodic oceanographic cruises and measurement flights in the lower and upper troposphere as well as in the lower stratosphere. To date, more than 40 ground-based monitoring sites constitute the global network covering many regions where little to no observational data were available before GMOS. This work presents atmospheric Hg concentrations recorded worldwide in the framework of the GMOS project (2010-2015), analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. Major findings highlighted in this paper include a clear gradient of Hg concentrations between the Northern and Southern hemispheres, confirming that the gradient observed is mostly driven by local and regional sources, which can be anthropogenic, natural or a combination of both.

References

  1. Environ Sci Technol. 2002 Mar 15;36(6):1245-56 - PubMed
  2. Environ Sci Technol. 2003 Jan 1;37(1):22-31 - PubMed
  3. Environ Sci Technol. 2005 Dec 1;39(23):9156-65 - PubMed
  4. Environ Sci Process Impacts. 2015 Aug;17(8):1482-91 - PubMed
  5. Environ Pollut. 2006 Sep;143(1):153-8 - PubMed
  6. J Environ Sci (China). 2007;19(2):176-80 - PubMed
  7. Environ Sci Technol. 2008 Jul 15;42(14):5183-8 - PubMed
  8. Environ Sci Technol. 2004 Mar 15;38(6):1772-6 - PubMed
  9. J Environ Monit. 2012 Mar;14(3):752-65 - PubMed
  10. Environ Monit Assess. 2012 Jul;184(7):4233-45 - PubMed
  11. Environ Sci Technol. 2010 Nov 15;44(22):8574-80 - PubMed
  12. J Environ Monit. 2010 Mar;12(3):689-95 - PubMed
  13. Environ Sci Technol. 2004 Apr 15;38(8):2373-82 - PubMed
  14. Environ Sci Technol. 2006 Sep 1;40(17):5312-8 - PubMed
  15. Environ Sci Technol. 2011 Dec 15;45(24):10485-91 - PubMed
  16. Environ Sci Technol. 2014;48(3):1707-17 - PubMed
  17. Environ Sci Technol. 2004 Jan 1;38(1):69-76 - PubMed
  18. Chemosphere. 2015 Jan;119:530-539 - PubMed
  19. Environ Sci Technol. 2002 Jul 1;36(13):3000-9 - PubMed
  20. Environ Sci Technol. 2010 Feb 1;44(3):901-7 - PubMed
  21. Environ Sci Technol. 2010 Oct 1;44(19):7425-30 - PubMed
  22. Chemosphere. 2005 Feb;58(6):779-92 - PubMed
  23. Ambio. 2007 Feb;36(1):19-32 - PubMed
  24. Environ Sci Technol. 2015 Jun 2;49(11):6712-21 - PubMed
  25. Environ Pollut. 2004 May;129(2):247-55 - PubMed
  26. Environ Sci Pollut Res Int. 2014 Mar;21(6):4193-208 - PubMed
  27. Atmos Chem Phys. 2017;17:1881-1899 - PubMed
  28. Environ Geochem Health. 2014 Aug;36(4):713-34 - PubMed
  29. Environ Health Perspect. 2010 Jun;118(6):847-55 - PubMed

Publication Types

Grant support