Display options
Share it on

Nature. 2018 Oct;562(7725):82-85. doi: 10.1038/s41586-018-0565-5. Epub 2018 Oct 03.

Very-high-energy particle acceleration powered by the jets of the microquasar SS 433.

Nature

A U Abeysekara, A Albert, R Alfaro, C Alvarez, J D Álvarez, R Arceo, J C Arteaga-Velázquez, D Avila Rojas, H A Ayala Solares, E Belmont-Moreno, S Y BenZvi, C Brisbois, K S Caballero-Mora, T Capistrán, A Carramiñana, S Casanova, M Castillo, U Cotti, J Cotzomi, S Coutiño de León, C De León, E De la Fuente, J C Díaz-Vélez, S Dichiara, B L Dingus, M A DuVernois, R W Ellsworth, K Engel, C Espinoza, K Fang, H Fleischhack, N Fraija, A Galván-Gámez, J A García-González, F Garfias, A González-Muñoz, M M González, J A Goodman, Z Hampel-Arias, J P Harding, S Hernandez, J Hinton, B Hona, F Hueyotl-Zahuantitla, C M Hui, P Hüntemeyer, A Iriarte, A Jardin-Blicq, V Joshi, S Kaufmann, P Kar, G J Kunde, R J Lauer, W H Lee, H León Vargas, H Li, J T Linnemann, A L Longinotti, G Luis-Raya, R López-Coto, K Malone, S S Marinelli, O Martinez, I Martinez-Castellanos, J Martínez-Castro, J A Matthews, P Miranda-Romagnoli, E Moreno, M Mostafá, A Nayerhoda, L Nellen, M Newbold, M U Nisa, R Noriega-Papaqui, J Pretz, E G Pérez-Pérez, Z Ren, C D Rho, C Rivière, D Rosa-González, M Rosenberg, E Ruiz-Velasco, F Salesa Greus, A Sandoval, M Schneider, H Schoorlemmer, M Seglar Arroyo, G Sinnis, A J Smith, R W Springer, P Surajbali, I Taboada, O Tibolla, K Tollefson, I Torres, G Vianello, L Villaseñor, T Weisgarber, F Werner, S Westerhoff, J Wood, T Yapici, G Yodh, A Zepeda, H Zhang, H Zhou

Affiliations

  1. Department of Physics and Astronomy, University of Utah, Salt Lake City, UT, USA.
  2. Physics and Theoretical Divisions, Los Alamos National Laboratory, Los Alamos, NM, USA.
  3. Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico.
  4. Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Mexico.
  5. Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico.
  6. Department of Physics, Pennsylvania State University, University Park, PA, USA.
  7. Department of Physics and Astronomy, University of Rochester, Rochester, NY, USA.
  8. Department of Physics, Michigan Technological University, Houghton, MI, USA.
  9. Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla, Mexico.
  10. Institute of Nuclear Physics Polish Academy of Sciences, IFJ-PAN, Krakow, Poland.
  11. Max-Planck Institute for Nuclear Physics, Heidelberg, Germany.
  12. Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.
  13. Departamento de Física, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Mexico.
  14. Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin-Madison, Madison, WI, USA.
  15. Instituto de Astronomía, Universidad Nacional Autónoma de México, Mexico City, Mexico.
  16. School of Physics, Astronomy, and Computational Sciences, George Mason University, Fairfax, VA, USA.
  17. Department of Physics, University of Maryland, College Park, MD, USA.
  18. Department of Astronomy, University of Maryland, College Park, MD, USA.
  19. Joint Space-Science Institute, University of Maryland, College Park, MD, USA.
  20. Inter-university Institute for High Energies, Université Libre de Bruxelles, Brussels, Belgium.
  21. NASA Marshall Space Flight Center, Astrophysics Office, Huntsville, AL, USA.
  22. Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA.
  23. Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA.
  24. Universidad Politecnica de Pachuca, Pachuca, Mexico.
  25. INFN and Universita di Padova, Padova, Italy.
  26. Centro de Investigación en Computación, Instituto Politécnico Nacional, Mexico City, Mexico.
  27. Universidad Autónoma del Estado de Hidalgo, Pachuca, Mexico.
  28. Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico.
  29. Department of Physics and Astronomy, University of Rochester, Rochester, NY, USA. [email protected].
  30. Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, CA, USA.
  31. School of Physics and Center for Relativistic Astrophysics, Georgia Institute of Technology, Atlanta, GA, USA.
  32. Department of Physics, Stanford University, Stanford, CA, USA.
  33. Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, USA.
  34. Physics Department, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico.
  35. Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA.
  36. Physics and Theoretical Divisions, Los Alamos National Laboratory, Los Alamos, NM, USA. [email protected].

PMID: 30283106 DOI: 10.1038/s41586-018-0565-5

Abstract

SS 433 is a binary system containing a supergiant star that is overflowing its Roche lobe with matter accreting onto a compact object (either a black hole or neutron star)

References

  1. Margon, B. Observations of SS 433. Annu. Rev. Astron. Astrophys. 22, 507–536 (1984). - PubMed
  2. Fabrika, S. The jets and supercritical accretion disk in SS433. Astrophys. Space Phys. Rev. 12, 1–152 (2004). - PubMed
  3. Cherepashchuk, A. M. et al. INTEGRAL observations of SS433: results of coordinated campaign. Astron. Astrophys. 437, 561–573 (2005). - PubMed
  4. Zealey, W. J., Dopita, M. A. & Malin, D. F. The interaction between the relativistic jets of SS433 and the interstellar medium. Mon. Not. R. Astron. Soc. 192, 731–743 (1980). - PubMed
  5. Margon, B. & Anderson, S. F. Ten years of SS 433 kinematics. Astrophys. J. 347, 448–454 (1989). - PubMed
  6. Safi-Harb, S. & Ögelman, H. ROSAT and ASCA observations of W50 associated with the peculiar source SS 433. Astrophys. J. 483, 868–881 (1997). - PubMed
  7. Eikenberry, S. S. et al. Twenty years of timing SS 433. Astrophys. J. 561, 1027 (2001). - PubMed
  8. Migliari, S., Fender, R. P. & Mendez, M. Iron emission lines from extended X-ray jets in SS 433: reheating of atomic nuclei. Science 297, 1673 (2002). - PubMed
  9. Mirabel, I. & Rodríguez, L. F. Sources of relativistic jets in the galaxy. Annu. Rev. Astron. Astrophys. 37, 409–443 (1999). - PubMed
  10. Begelman, M. C., King, A. R. & Pringle, J. E. The nature of SS433 and the ultraluminous X-ray sources. Mon. Not. R. Astron. Soc. 370, 399–404 (2006). - PubMed
  11. Fabrika, S., Ueda, Y., Vinokurov, A., Sholukhova, O. & Shidatsu, M. Supercritical accretion discs in ultraluminous X-ray sources and SS 433. Nat. Phys. 11, 551 (2015). - PubMed
  12. Cherepashchuk, A. M., Aslanov, A. A. & Kornilov, V. G. WBVR photometry of SS 433—spectra of the normal star and the accretion disk. Sov. Astron. 26, 697–702 (1982). - PubMed
  13. Tetarenko, B. E., Sivakoff, G. R., Heinke, C. O. & Gladstone, J. C. WATCHDOG: a comprehensive all-sky database of galactic black hole X-ray binaries. Astrophys. J. Suppl. 222, 15 (2016). - PubMed
  14. Geldzahler, B. J., Pauls, T. & Salter, C. J. Continuum observations of the supernova remnants W50 and G 74.9+1.2 at 2695 MHz. Astron. Astrophys. 84, 237–244 (1980). - PubMed
  15. Brinkmann, W., Pratt, G. W., Rohr, S., Kawai, N. & Burwitz, V. XMM-Newton observations of the eastern jet of SS433. Astron. Astrophys. 463, 611–619 (2007). - PubMed
  16. Safi-Harb, S. & Petre, R. Rossi X-ray timing explorer observations of the eastern lobe of W50 associated with SS 433. Astrophys. J. 512, 784–792 (1999). - PubMed
  17. Aharonian, F. et al. TeV gamma-ray observations of SS-433 and a survey of the surrounding field with the HEGRA IACT-System. Astron. Astrophys. 439, 635–643 (2005). - PubMed
  18. Hayashi, S. et al. Search for VHE gamma rays from SS433/W50 with the CANGAROO-II telescope. Astropart. Phys. 32, 112–119 (2009). - PubMed
  19. Ahnen, M. L. et al. Constraints on particle acceleration in SS433/W50 from MAGIC and H.E.S.S. observations. Astron. Astrophys. 612, A14 (2018). - PubMed
  20. Kar, P. VERITAS observations of high-mass X-ray binary SS 433. Proc. Sci. (35th Int. Cosmic Ray Conf.) ICRC2017, https://doi.org/10.22323/1.301.0713 (2018). - PubMed
  21. Bordas, P., Yang, R., Kafexhiu, E. & Aharonian, F. Detection of persistent gamma-ray emission toward SS433/W50. Astrophys. J. 807, L8 (2015). - PubMed
  22. Abeysekara, A. U. et al. The 2HWC HAWC Observatory Gamma Ray Catalog. Astrophys. J. 843, 40 (2017). - PubMed
  23. López-Coto, R. et al. Effect of the diffusion parameters on the observed γ-ray spectrum of sources and their contribution to the local all-electron spectrum: the EDGE code. Astropart. Phys. 102, 1–11 (2018). - PubMed
  24. Albert, J. et al. Variable very high energy gamma-ray emission from the microquasar LS I +61° 303. Science 312, 1771–1773 (2006). - PubMed
  25. Archambault, S. et al. Exceptionally bright TeV flares from the binary LS I + 61° 303. Astrophys. J. 817, L7 (2016). - PubMed
  26. Reynoso, M. M., Romero, G. E. & Christiansen, H. R. Production of gamma rays and neutrinos in the dark jets of the microquasar SS433. Mon. Not. R. Astron. Soc. 387, 1745–1754 (2008). - PubMed
  27. Panferov, A. A. Jets of SS 433 on scales of dozens of parsecs. Astron. Astrophys. 599, A77 (2017). - PubMed
  28. Ptuskin, V. S., Moskalenko, I. V., Jones, F. C., Strong, A. W. & Zirakashvili, V. N. Dissipation of magnetohydrodynamic waves on energetic particles: impact on interstellar turbulence and cosmic ray transport. Astrophys. J. 642, 902–916 (2006). - PubMed
  29. Moderski, R., Sikora, M., Coppi, P. S. & Aharonian, F. A. Klein-Nishina effects in the spectra of non-thermal sources immersed in external radiation fields. Mon. Not. R. Astron. Soc. 364, 1488 (2005). - PubMed
  30. Romero, G., Boettcher, M., Markoff, S. & Tavecchio, F. Relativistic jets in active galactic nuclei and microquasars. Space Sci. Rev. 207, 5–61 (2017). - PubMed
  31. Smith, A. J. HAWC: design, operation, reconstruction and analysis. Proc. Sci. (34th Int. Cosmic Ray Conf.) ICRC2015, https://doi.org/10.22323/1.236.0966 (2016). - PubMed
  32. Abeysekara, A. U. et al. Observation of the Crab Nebula with the HAWC Gamma Ray Observatory. Astrophys. J. 843, 39 (2017). - PubMed
  33. Younk, P. W. et al. A high-level analysis framework for HAWC. Proc. Sci. (34th Int. Cosmic Ray Conf.) ICRC2015, https://doi.org/10.22323/1.236.0948 (2016). - PubMed
  34. Vianello, G. et al. The multi-mission maximum likelihood framework. Proc. Sci. (34th Int. Cosmic Ray Conf.) ICRC2015, https://doi.org/10.22323/1.236.1042 (2016). - PubMed
  35. Gorski, K. M. et al. HEALPix—a framework for high resolution discretization, and fast analysis of data distributed on the sphere. Astrophys. J. 622, 759–771 (2005). - PubMed
  36. Wilks, S. S. The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat. 9, 60–62 (1938). - PubMed
  37. Chaty, S. & Delautier, S. Microquasars. http://www.aim.univ-paris7.fr/CHATY/Microquasars/microquasars.html (Université Paris Diderot, 2006). - PubMed
  38. Aharonian, F. et al. Discovery of very high energy gamma rays associated with an X-ray binary. Science 309, 746–749 (2005). - PubMed
  39. Aliu, E. et al. Multiwavelength observations of the TeV binary LS I +61 303 with VERITAS, Fermi-LAT, and Swift/XRT during a TeV outburst. Astrophys. J. 779, 88 (2013). - PubMed
  40. Abeysekara, A. U. et al. Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth. Science 358, 911–914 (2017). - PubMed
  41. Brinkmann, W., Aschenbach, B. & Kawai, N. ROSAT observations of the W 50/SS 433 system. Astron. Astrophys. 312, 306–316 (1996). - PubMed
  42. Feldman, G. J. & Cousins, R. D. A unified approach to the classical statistical analysis of small signals. Phys. Rev. D 57, 3873–3889 (1998). - PubMed
  43. Fuchs, Y., Mirabel, I. F. & Ogley, R. N. Mid-infrared observations of GRS 1915+105 and SS 433. Astrophys. Space Sci. Suppl. 276, 99–100 (2001). - PubMed
  44. Finke, J. D. & Dermer, C. D. Cosmic ray electron evolution in the supernova remnant RX J1713.7-3946. Astrophys. J. 751, 65 (2012). - PubMed
  45. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pacif. 125, 306–312 (2013). - PubMed
  46. Particle Data Group. Review of particle physics. Phys. Lett. B 592, 1–5 (2004). - PubMed
  47. Amato, E. & Blasi, P. Non linear particle acceleration at non-relativistic shock waves in the presence of self-generated turbulence. Mon. Not. R. Astron. Soc. 371, 1251–1258 (2006). - PubMed
  48. Malkov, M. A., Diamond, P. H., Sagdeev, R. Z., Aharonian, F. A. & Moskalenko, I. V. Analytic solution for self-regulated collective escape of cosmic rays from their acceleration sites. Astrophys. J. 768, 73 (2013). - PubMed

Publication Types